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PREFACE

The definition of human intelligence has always been elusive. Despite years
of research, scientists are still unable to describe accurately the reasoning
process of the human brain. Scientific models have been used to describe the
human reasoning process. Even though such models are never foolproof, they
turn out to be suitable for most practical analyses of human intelligence. As
new discoveries are made about the human brain, the descriptive models
change to accommodate the new findings. Artificial intelligence (Al) is the
combined attempt of mathematicians, engineers, and computer scientists to
develop computers that perform acts normally associated with human intel-
ligence. Since the term was coined by John McCarthy in the mid-1950s,
artificial intelligence has undergone a remarkable transition from an object of
research curiosity to a practical tool.

Specialized branches of Al have developed in recent years to accommodate
specific application problems. The research and application domains of Al
now cover diverse areas including speech recognition, pattern matching, nat-
ural language, artificial vision, game theory, robotics, learning, and theorem
proving.

Expert systems (ES) constitute a class of modular computer programs de-
veloped to serve as electronic consultants in complex decision problems that
would ordinarily require human expertise. Expert systems have been imple-
mented for several practical purposes, the most successful being in medical
diagnosis, equipment troubleshooting, mineral prospecting, and computer sys-
tem configuration. New successful applications in other areas of human en-
deavors are reported frequently.

This book is designed to add to the existing body of printed materials on
expert systems. The book presents a comprehensive discussion of all the basic
concepts and procedures. The audience for the book includes students and
teachers of expert systems, executives, managers, consultants, computer hob-
byists, computer professionals, and nonprofessionals. It combines three pop-
ular and successful areas of artificial intelligence, the concepts of expert
systems, fuzzy logic, and artificial neural networks. These concepts have been
applied individually successfully in various academic, business, and industrial
applications. But as the Al field matures and expands, it is increasingly nec-
essary to combine these three areas. This is what the book delivers.

XV



Xvi PREFACE

Artificial intelligence and expert systems have emerged from the laboratory
into the realm of practical applications. Over the past several years, the in-
terest in expert systems has increased dramatically. New basic developments
and application avenues in science, business, and industry are being reported
almost daily. Since this is a relatively new technology, there is still a shortage
of printed material to educate researchers and practitioners on this very im-
portant computer-based tool. The publication of new books on expert systems
has increased significantly in the past five years. Yet there are not enough
books to satisfy both the academic and business needs. The authors frequently
receive requests from the business and industry communities to recommend
reading materials on expert systems.

It has become very important to train students and working professionals
in the emerging technology of expert systems. Colleges and universities have
been responding to this challenge by developing new courses in expert sys-
tems at both the undergraduate and graduate levels. Both authors now teach
courses in expert systems or closely related fields.

In addition to presenting a practical and hybrid integration of expert sys-
tems, fuzzy logic, and artificial neural networks, this book includes simula-
tion, which is a general computer tool.
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1

ARTIFICIAL INTELLIGENCE

The background of artificial intelligence (Al) has been characterized by con-
troversial opinions and diverse approaches. Despite the controversies, which
have ranged from the basic definition of intelligence to questions about the
moral and ethical aspects of pursuing Al, the technology continues to generate
practical results. With increasing efforts in Al research, many of the prevailing
arguments are being resolved with proven technical approaches. Expert sys-
tems, the main subject of this book, is the most promising branch of Al

“Artificial intelligence” is a controversial name for a technology that prom-
ises much potential for improving human productivity. The phrase seems to
challenge human pride in being the sole creation capable of possessing real
intelligence. All kinds of anecdotal jokes about AI have been offered by
casual observers. A speaker once recounted his wife’s response when he told
her that he was venturing into the new technology of artificial intelligence.
“Thank God, you’re finally realizing how dumb I've been saying you were
all these years,” was alleged to have been the wife’s words of encouragement.
One whimsical definition of Al is “Artificial Insemination of knowledge into
a machine.” Despite the derisive remarks, serious embracers of Al may yet
have the last laugh. It is being shown again and again that Al may hold the
key to improving operational effectiveness in many areas of applications.
Some observers have suggested changing the term artificial intelligence to a
less controversial one such as intelligent applications (IA). This refers more
to the way that computer and software are used innovatively to solve complex
decision problems.

Natural intelligence involves the capability of humans to acquire knowl-
edge, reason with the knowledge, and use it to solve problems effectively. By
contrast, artificial intelligence is defined as the ability of a machine to use
simulated knowledge in solving problems.

1.1 ORIGIN OF ARTIFICIAL INTELLIGENCE

The definition of intelligence had been sought by many great philosophers
and mathematicians over the ages, including Aristotle, Plato, Copernicus, and
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2 ARTIFICIAL INTELLIGENCE

Galileo. They attempted to explain the process of thought and understanding.
The real key that started the quest for the simulation of intelligence did not
occur, however, until the English philosopher Thomas Hobbes put forth an
interesting concept in the 1650s. Hobbes believed that thinking consists of
symbolic operations and that everything in life can be represented mathe-
matically. These beliefs led directly to the notion that a machine capable of
carrying out mathematical operations on symbols could imitate human think-
ing. This is the basic driving force behind the AI effort. For that reason
Hobbes is sometimes referred to as the grandfather of artificial intelligence.

While the term ‘‘artificial intelligence” was coined by John McCarthy rel-
atively recently (1956), the idea had been considered centuries before. As
early as 1637 René Descartes was conceptually exploring the ability of a
machine to have intelligence when he said:

For we can well imagine a machine so made that it utters words and even, in a
few cases, words pertaining specifically to some actions that affect it physically.
However, no such machine could ever arrange its words in various different
ways so as to respond to the sense of whatever is said in its presence—as even
the dullest people can do.

Descartes believed that the mind and the physical world are on parallel
planes that cannot be equated. They are of different substances following
entirely different rules and can thus not be successfully compared. The phys-
ical world (i.e., machines) cannot imitate the mind because there is no com-
mon reference point.

The 1800s saw advancement in the conceptualization of the computer.
Charles Babbage, a British mathematician, laid the foundation for the con-
struction of the computer, a machine defined as being capable of performing
mathematical computations. In 1833 Babbage introduced an analytical engine.
This computational machine incorporated two unprecedented ideas that were
to become crucial elements in the modern computer. First, it had operations
that were fully programmable, and second, it could contain conditional
branches. Without these two abilities the power of today’s computers would
be inconceivable. Due to a lack of financial support, Babbage was never able
to realize his dream of building the analytic engine. However, his dream was
revived through the efforts of later researchers. Babbage’s basic concepts can
be observed in the way that most computers operate today.

Another British mathematician, George Boole, worked on issues that were
to become equally important. Boole formulated the laws of thought that set
up rules of logic for representing thought. The rules contained only two-
valued variables. By this, any variable in a logical operation could be in one
of only two states: yes or no, true or false, all or nothing, O or 1, on or off,
and so on. This was the birth of digital logic, a key component of the artificial
intelligence effort.

In the early 1900s Alfred North Whitehead and Bertrand Russell extended
Boole’s logic to include mathematical operations. This not only led to the
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formulation of digital computers but also made possible one of the first ties
between computers and thought process.

However, there was still no acceptable way to construct such a computer.
In 1938 Claude Shannon demonstrated that Boolean logic consisting of only
two-variable states (e.g., on—off switching of circuits) can be used to perform
logic operations [93]. Based on this premise, ENIAC (Electronic Numerical
Integrator and Computer) was built in 1946 at the University of Pennsylvania.
ENIAC was a large-scale, fully operational electronic computer that signaled
the beginning of the first generation of computers. It could perform calcula-
tions 1,000 times faster than its electromechanical predecessors. It weighed
30 tons, stood two stories high, and occupied 1500 square feet of floor space.
Unlike today’s computers, which operate in binary codes (Os and 1s), ENIAC
operated in decimal (0, 1, 2, . . . , 9) and required 10 vacuum tubes to
represent one decimal digit. With over 18,000 vacuum tubes, ENIAC needed
a great amount of electrical power, so much that it was said that it dimmed
the lights in Philadelphia whenever it operated.

1.2 HUMAN INTELLIGENCE VERSUS MACHINE
INTELLIGENCE

Two of the leading mathematicians and computer enthusiasts between 1900
and 1950 were Alan Turing and John von Neumann. In 1945, von Neumann
insisted that computers should not be built as glorified adding machines, with
all their operations specified in advance. Rather, he suggested, computers
should be built as general-purpose logic machines capable of executing a wide
variety of programs. Such machines, von Neumann proclaimed, would be
highly flexible and capable of being readily shifted from one task to another.
They could react intelligently to the results of their calculations, could choose
among alternatives, and could even play checkers or chess. This represented
something unheard of at that time: a machine with built-in intelligence, able
to operate on internal instructions.

Prior to von Neumann’s concept, even the most complex mechanical de-
vices had always been controlled from the outside, for example, by setting
dials and knobs. Von Neumann did not invent the computer, but what he
introduced was equally significant: computing by use of computer programs,
the way it is done today. His work paved the way for what would later be
called artificial intelligence in computers.

Alan Turing also made major contributions to the conceptualization of a
machine that can be universally used for all problems based only on variable
instructions fed into it. Turing’s universal machine concept, along with von
Neumann’s concept of a storage area containing multiple instructions that can
be accessed in any sequence, solidified the ideas needed to develop the pro-
grammable computer. Thus, a machine was developed that could perform
logical operations and could do them in varying orders by changing the set
of instructions that were executed.
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Due to the fact that operational machines were now being realized, ques-
tions about the “intelligence’ of the machines began to surface. Turing’s other
contribution to the world of Al came in the area of defining what constitutes
intelligence. In 1950 he designed the Turing test for determining the intelli-
gence of a system. The test utilized the conversational interaction between
three players to try to verify computer intelligence.

The test is conducted by having a person (the interrogator) in a room that
contains only a computer terminal. In an adjoining room, hidden from view,
a man (person A) and a woman (person B) are located with another computer
terminal. The interrogator communicates with the couple in the other room
by typing questions on the keyboard. The questions appear on the couple’s
computer screen and they respond by typing on their own keyboard. The
interrogator can direct questions to either person A or person B, but without
knowing which is the man and which is the woman.

The purpose of the test is to distinguish between the man and the woman
merely by analyzing their responses. In the test, only one of the people is
obligated to give truthful responses. The other person deliberately attempts to
fool and confuse the interrogator by giving responses that may lead to an
incorrect guess. The second stage of the test is to substitute a computer for
one of the two persons in the other room. Now the human is obligated to
give truthful responses to the interrogator while the computer tries to fool the
interrogator into thinking that it is human. Turing’s contention is that if the
interrogator’s success rate in the human/computer version of the game is not
better than his success rate in the man/woman version, then the computer
can be said to be “‘thinking.” That is, the computer possesses “‘intelligence.”
Turing’s test has served as a classical example for artificial intelligence pro-
ponents for many years.

By 1952 computer hardware had advanced far enough that actual experi-
ments in writing programs to imitate thought processes could be conducted.
The team of Herbert Simon, Allen Newell, and Cliff Shaw was organized to
conduct such an experiment. They set out to establish what kinds of problems
a computer could solve with the right programming. Proving theorems in
symbolic logic such as those set forth by Whitehead and Russell in the early
1900s fit the concept of what they felt an intelligent computer should be able
to handle.

It quickly became apparent that there was a need for a new higher-level
computer language than was currently available. First, they needed a language
that was more user-friendly and could take program instructions that are easily
understood by a human programmer and automatically convert them into
machine language that could be understood by the computer. Second, they
needed a programming language that changed the way in which computer
memory was allocated. All previous languages would preassign memory at
the start of a program. The team found that the type of programs they were
writing would require large amounts of memory and would function unpre-
dictably.
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To solve the problem, they developed a list processing language. This type
of language would label each area of memory and then maintain a list of all
available memory. As memory became available it would update the list and
when more memory was needed it would allocate the amount necessary. This
type of programming also allowed the programmer to be able to structure his
or her data so that any information that was to be used for a particular problem
could be easily accessed.

The end result of their effort was a program called Logic Theorist. This
program had rules consisting of axioms already proved. When it was given a
new logical expression, it would search through all of the possible operations
in an effort to discover a proof of the new expression. Instead of using a
brute force search method, they pioneered the use of heuristics in the search
method.

The Logic Theorist that they developed in 1955 was capable of solving 38
of 52 theorems that Whitehead and Russell had devised. It did them very
quickly. What took Logic Theorist a matter of minutes would have taken
years if it had been done by simple brute force on a computer. By comparison
the steps that it went through to arrive at a proof to those that human subjects
went through showed that it had achieved a remarkable imitation of the human
thought process. This system is considered the first Al program.

1.3 THE FIRST AI CONFERENCE

The summer of 1956 saw the first attempt to establish the field of machine
intelligence into an organized effort. The Dartmouth Summer Conference,
organized by John McCarthy, Marvin Minsky, Nathaniel Rochester, and
Claude Shannon, brought together people whose work and interest formally
founded the field of Al The conference, held at Dartmouth College in New
Hampshire, was funded by a grant from the Rockefeller Foundation. It was
at that conference that John McCarthy coined the term ‘‘artificial intelli-
gence.” This was the same John McCarthy who developed the LISP program-
ming language, which has become a standard tool for Al development. In
attendance at the meeting, in addition to the organizers, were Herbert Simon,
Allen Newell, Arthur Samuel, Trenchard More, Oliver Selfridge, and Ray
Solomonoff.

The Logic Theorist developed by Newell, Shaw, and Simon was discussed
at the conference [73]. Newell, Shaw, and Simon were far ahead of others in
actually implementing Al ideas. The Dartmouth meeting served mostly as an
avenue for the exchange of information and, more importantly, as a turning
point in the main emphasis of work in the Al endeavor. Instead of concen-
trating on the hardware to imitate intelligence, the meeting set the course for
examining the structure of the data being processed by computers, the use of
computers to process symbols, the need for new languages, and the role of
computers for testing theories.
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1.4 EVOLUTION OF SMART PROGRAMS

The next major step in software technology came from Newell, Shaw, and
Simon in 1959. The program they introduced was called General Problem
Solver (GPS). GPS was intended to be a program that could solve many types
of problems. It was capable of solving theorems, playing chess, or doing
various complex puzzles. GPS was a significant step forward in Al It incor-
porates several new ideas to facilitate problem solving. The nucleus of the
system was the use of means-end analysis, which involves comparing a pres-
ent state with a goal state. The difference between the two states is determined
and a search is done to find a method to reduce this difference. This process
is continued until there is no difference between the current state and the goal
state.

In order to improve the search further, GPS contained two other features.
The first is that, if while trying to reduce the deviation from the goal state,
GPS finds that it has actually complicated the search process, it was capable
of backtracking to an earlier state and exploring alternate solution paths. The
second is that it was capable of defining sub-goal states that, if satisfied,
would permit the solution process to continue. In formulating GPS, Newell
and Simon had done extensive work studying human subjects and the way
they solved problems. They felt that GPS did a good job of imitating the
human subjects. They commented on the effort by saying [72]:

The fragmentary evidence we have obtained to date encourages us to think that
the General Problem Solver provides a rather good first approximation to an
information processing theory of certain kinds of thinking and problem-solving
behavior. The processes of “thinking” can no longer be regarded as completely
mysterious.

One criticism of GPs was that the only way the program obtained any
information was through human input. The way and order in which the prob-
lems were presented was controlled by humans, thus the program was only
doing what it was told to do. Newell and Simon argued that the fact that the
program was not just repeating steps and sequences, but was actually applying
rules to solve problems it had not previously encountered, is indicative of
intelligent behavior.

There were other criticisms as well. Humans are able to devise new short-
cuts and improvise. GPS would always go down the same path to solve the
same problem, making the same mistakes as before. It could not learn. An-
other problem was that while GPS was good when given a certain area or a
specific search space to solve, in solving problems it was difficult to determine
what search space to use. Sometimes solving the problem is trivial compared
to finding the search space. The problems posed to GPS were all of a specific
nature. They were all puzzles or logical challenges; problems that could easily
be expressed in symbolic form and operated on in a pseudomathematical
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approach. There are many problems that humans face that are not so easily
expressed in symbolic form.

Also in 1959, John McCarthy came out with a tool that was to greatly
improve the ability of researchers to develop Al programs. He developed a
new computer programming language called LISP (list processing). It was to
become one of the most widely used languages in the field.

LISP is distinctive in two areas: memory organization and control structure.
The memory organization is done in a tree fashion with interconnections
between memory groups. Thus, it permits a programmer to keep track of
complex structural relationships. The other distinction is the way the control
of the program is done. Instead of working from the prerequisites to a goal,
it starts with the goal and works backwards to determine what prerequisites
are required to achieve the goal.

In 1960 Frank Rosenblatt did work in the area of pattern recognition. He
introduced a device called PERCEPTRON that was supposed to be capable
of recognizing letters and other patterns. It consisted of a grid of 400 photo
cells connected with wires to a response unit that would produce a signal
only if the light coming off the subject to be recognized crossed a certain
threshold.

During the latter part of the 1960s there were two efforts in another area
of simulating human reasoning. Kenneth Colby at Stanford University and
Joseph Weizenbaum at MIT wrote separate programs that were capable of
interacting in a two-way conversation. Weizenbaum’s program was called
ELIZA. The programs were able to sustain very realistic conversations by
using very clever techniques. For example, ELIZA used a pattern-matching
method that would scan for keywords like “I,” “you,” “like,” and so on. If
one of these words was found, it would execute rules associated with it. If
no match was found, the program would respond with a request for more
information or with a noncommittal response.

It was also during the 1960s that Marvin Minsky and his students at MIT
made significant contributions towards the progress of Al. One student, T. G.
Evans, wrote a program that would perform visual analogies. The program
was shown two figures that had some relationship to each other and was then
asked to find another set of figures from a set that matched the same rela-
tionship. The input to the computer was not done by a visual sensor (like the
one worked on by Rosenblatt), but instead the figures were described to the
system.

In 1968 another student of Minsky’s, Daniel Bobrow, came out with a
linguistic problem solver called STUDENT. It was designed to solve problems
that were presented to it in a word problem format. The key to the program
was the assumption that every sentence was an equation. It would take certain
words and turn them into mathematical operations. For example, it would
convert ““is’ into 7 and “per” into “+.”’

Even though STUDENT responded very much the same way that a real
student would, there was a major difference in depth of understanding. While

6 __
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the program was capable of calculating the time two trains would collide
given the starting points and speeds of both, it had no real understanding or
even cared what a ““train” or “‘time’’ was. Expressions like ‘“‘perchance” and
“this is it”” could mean totally different things than what the program would
assume. A human student would be able to discern the intended meaning
from the context in which the terms were used.

In an attempt to answer the criticisms about understanding, another student
at MIT, Terry Winograd, developed a significant program named SHRDLU.
In setting up his program, he utilized what was referred to as a micro-world
or blocks-world. This limited the scope of the world that the program had to
try to understand. The program communicated in what appeared to be natural
language.

The world of SHRDLU consisted of a set of blocks of varying shapes
(cubes, pyramids, etc.), sizes, and colors. These blocks were all set on an
imaginary table. Upon request, SHRDLU would rearrange the blocks to any
requested configuration. The program was capable of knowing when a request
was unclear or impossible. For instance, if it was requested to put a block on
top of a pyramid it would request that the user specify more clearly what
block and what pyramid. It would also recognize that the block would not sit
on top of the pyramid.

Two other approaches that the program took that were new to programs
were the ability to make assumptions and the ability to learn. If asked to pick
up a larger block, it would assume that you meant a larger block than the
one it was currently working on. If asked to build a figure that it did not
know, it would ask for an explanation of what it was and, thereafter, it would
recognize the object. One major sophistication that SHRDLU added to the
science of Al programming was its use of a series of expert modules or
specialists. There was one segment of the program that specialized in seg-
menting sentences into meaningful word groups, a sentence specialist to de-
termine the relationship between nouns and verbs, and a scenario specialist
that understood how individual scenes related to one another. This sophisti-
cation greatly enhanced the method in which instructions were analyzed.

As sophisticated as SHRDLU was at that time, other scholars were quick
to point out its deficiencies. SHRDLU only responded to requests; it could
not initiate conversations. It also had no sense of conversational flow. It would
jump from performing one type of task to a totally different one if so re-
quested. While SHRDLU had an understanding of the tasks it was to perform
and the physical world in which it operated, it still could not understand very
abstract concepts.

1.5 BRANCHES OF ARTIFICIAL INTELLIGENCE

The various attempts at formally defining the use of machines to simulate
human intelligence led to the development of several branches of Al. Current
subspecialities of artificial intelligence include:



1.6 NEURAL NETWORKS 9

1. Natural language processing deals with various areas of research such
as database inquiry systems, story understanders, automatic text index-
ing, grammar and style analysis of text, automatic text generation, ma-
chine translation, speech analysis, and speech synthesis.

2. Computer vision deals with research efforts involving scene analysis,
image understanding, and motion derivation.

3. Robotics involves the control of effectors on robots to manipulate or
grasp objects, locomotion of independent machines, and use of sensory
input to guide actions.

4. Problem-solving and planning involves applications such as refinement
of high-level goals into lower-level ones, determination of actions
needed to achieve goals, revision of plans based on intermediate results,
and focused search of important goals.

5. Learning deals with research into various forms of learning including
rote learning, learning through advice, learning by example, learning by
task performance, and learning by following concepts.

6. Expert systems deals with the processing of knowledge as opposed to
the processing of data. It involves the development of computer software
to solve complex decision problems.

1.6 NEURAL NETWORKS

Neural networks, sometimes called connectionist systems, are networks of
simple processing elements or nodes capable of processing information in
response to external inputs. Neural networks were originally presented as
models of the human nervous system. Just after World War II, scientists found
out that the physiology of the brain was similar to the electronic processing
mode used by computers. In both cases, large amounts of data are manipu-
lated. In the case of computers, the elementary unit of processing is the bit,
which is in either an “on’ or “off” state. In the case of the brain, neurons
perform the basic data processing. Neurons are tiny cells that follow a binary
principle of being either in a state of firing (on) or not firing (off). When a
neuron is on, it fires a signal to other neurons across a network of synapses.

In the late 1940s Donald Hebb, a researcher, hypothesized that biological
memory results when two neurons are active simultaneously. The synaptic
connection of synchronous neurons is reinforced and given preference over
connections made by neurons that are not active simultaneously. The level of
preference is measured as a weighted value. Pattern recognition, a major
strength of human intelligence, is based on the weighted strengths of the
reinforced connections between various pairs of simultaneously active neu-
rons.

The idea presented by Hebb was to develop a computer model based on
the way in which neurons form connections in the human brain. But the idea
was considered to be preposterous at that time since the human brain contains
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100 billion neurons and each neuron is connected to 10,000 others by a
synapse. Even with today’s computing capability, it is still difficult to dupli-
cate the activities of neurons. In 1969, Marvin Minsky and Seymour Pappert
criticized existing neural network research as being worthless [68]. It has been
claimed that the pessimistic views they presented discouraged further funding
for neural network research for several years. Funding was diverted instead
to further research of expert systems, which Minsky and Pappert favored.
Only recently have neural networks begun to make a strong comeback.

Because neural networks are modeled after the operations of the brain,
they hold considerable promise as building blocks for achieving the ultimate
aim of artificial intelligence. The present generation of neural networks uses
artificial neurons. Each neuron is connected to at least one other neuron in a
synapse-like fashion. The networks are based on some form of learning
model. Neural networks learn by evaluating changes in input. Learning can
be either supervised or unsupervised. In supervised learning, each response
is guided by given parameters. The computer is instructed to compare any
inputs to ideal responses, and any discrepancy between the new inputs and
ideal responses is recorded. The system then uses this data bank to guess how
much the newly gathered data are similar to or different from the ideal re-
sponses, that is, how closely the pattern matches. Supervised learning net-
works are now commercially used for control systems and handwriting and
speech recognition.

In unsupervised learning, input is evaluated independently and stored as
patterns. The system evaluates a range of patterns and identifies similarities
and dissimilarities among them. However, the system cannot derive any mean-
ing from the information without human assignment of values to the patterns.
Comparisons are relative to other results, rather than to an ideal result. Un-
supervised learning networks are used to discover patterns where a particular
outcome is not known in advance, such as in physics research and the analysis
of financial data. Several commercial neural network products are now avail-
able, such as NeuroShell from Ward Systems Group. The software is expen-
sive but is relatively easy to use. It interfaces well with other software such
as Lotus 1-2-3 and dBASE, as well as with C, Pascal, FORTRAN, and BASIC
programming languages.

Despite the proven potential of neural networks, they drastically oversim-
plify the operations of the brain. The existing systems can only undertake
elementary pattern-recognition tasks and are weak at deductive reasoning,
math calculations, and other computations that are easily handled by conven-
tional computer processing. The difficulty in achieving the promise of neural
networks lies in our limited understanding of how the human brain functions.
Undoubtedly, to model the brain accurately, we must know more about it.
But a complete knowledge of the brain is still many years away.

1.7 EMERGENCE OF EXPERT SYSTEMS

In the late 1960s to early 1970s a special branch of Al began to emerge. The
branch, known as expert systems, has grown dramatically in the past few
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years and represents the most successful demonstration of the capabilities of
Al Expert systems are the first truly commercial application of work done
in the Al field and as such have received considerable publicity. Due to the
potential benefits, there is currently a major concentration in the research and
development of expert systems compared to other efforts in Al

Unlike the desire to develop general problem-solving techniques that had
characterized Al before, expert systems address problems that are focused.
When Edward Feigenbaum developed the first successful expert system,
DENDRAL, he had a specific type of problem that he wanted to be able to
solve. The problem involved determining which organic compound was being
analyzed in a mass spectrograph. The program was intended to simulate the
work that an expert chemist would do in analyzing the data. This led to the
term ‘‘expert system.”

Between 1970 and 1980 numerous expert systems were introduced to han-
dle several functions, from diagnosing diseases to analyzing geological ex-
ploration information. Of course, expert systems have not escaped the critics.
Due to the nature of the system, critics argue that it does not fit the true
structure of artificial intelligence. Because of the use of only specific knowl-
edge and the ability to solve only specific problems, some critics are appre-
hensive about referring to an expert system as intelligent. Proponents argue
that if the system produces the desired results, it is of little concern whether
it is intelligent or not.

In 1972, Hubert Dreyfus initiated another debate of interest [24]. Joseph
Weizenbaum presented similar views in 1976 [102]. The issues that both
authors raised touched on some of the basic questions that dated back to the
time of Descartes. One of Weizenbaum’s reservations concerned what should
ethically and morally be handed over to machines. He maintained that the
path that Al was pursuing was headed in a dangerous direction. Some aspects
of human experience, such as love and morality, cannot be adequately imi-
tated by machines.

While the debates were going on over how much Al could do, the work
on getting Al to do more continued. In 1972 Roger Shrank introduced the
notion of script, the set of familiar events that can be expected from an often-
encountered setting. This enables a program to assimilate facts quickly. In
1975 Marvin Minsky presented the idea of frames. Even though neither con-
cept drastically advanced the theory of Al, they did help expedite research in
the field.

In 1979 Minsky suggested a method that could lead to a better simulation
of intelligence: the “‘society of minds” view, in which the execution of knowl-
edge is performed by several programs working in conjunction simultane-
ously. This concept helped to encourage interesting developments such as
present-day parallel processing.

During the 1980s Al gained significant exposure and interest. Artificial
intelligence, once restricted to the domain of esoteric research, has now be-
come a practical tool for solving real problems. While Al is enjoying its most
prosperous period, it is still plagued with disagreements and criticisms. The
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emergence of commercial expert systems on the market has created both
enthusiasm and skepticism. There is no doubt that more research and suc-
cessful applications developments will help prove the potential of expert sys-
tems. It should be recalled that new technologies sometimes fail to convince
all initial observers. IBM, which later became a giant in the personal computer
business, hesitated for several years before getting into the market because
the company never thought that those little boxes called personal computers
would ever have any significant impact on the society. How wrong they were!

The effort in Al is worthwhile as long as it increases the understanding
that we have of intelligence and enables us to do things that we previously
could not do. Due to the discoveries made in Al research, computers are now
capable of things that were once beyond imagination.

1.7.1 Embedded Expert Systems

More expert systems are beginning to show up, not as stand-alone systems,
but as software applications in large software systems. This trend is bound to
continue as systems integration takes hold in many software applications.
Many conventional commercial packages, such as statistical analysis systems,
data management systems, information management systems, project man-
agement systems, and data analysis systems, now contain embedded heuristics
that constitute expert systems components of the packages. Even some com-
puter operating systems now contain embedded expert systems designed to
provide real-time systems monitoring and troubleshooting. With the success
of embedded expert systems, the long-awaited payoffs from the technology
are now beginning to be realized.

Because the technology behind expert systems has changed little over the
past decade, the issue is not whether the technology is useful, but how to
implement it. This is why the integrated approach of this book is very useful.
The book focuses not only on the technology of expert systems, but also on
how to implement and manage the technology. Combining neural networks
technology with expert systems, for example, will become more prevalent. In
combination, the neural networks might be implemented as a tool for scanning
and selecting data while the expert system would evaluate the data and present
recommendations.
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FUNDAMENTALS OF EXPERT
SYSTEMS

This chapter introduces the basic concepts of expert systems. The hierarchical
process of developing expert systems is presented, as well as the essential
characteristics of expert systems are presented. More specific details of the
concepts introduced in this chapter are covered in subsequent chapters.

2.1 EXPERT SYSTEMS PROCESS

This book is organized in the structure of a strategic process for developing
successful expert systems. Figure 2.1 presents the hierarchy of topics as they
are presented here and in the subsequent chapters. The strategic process is
recommended for anyone venturing into the technology of expert systems
from the standpoint of training, research, or applications. This chapter covers
the basic concepts of expert systems technology. A basic understanding of
these concepts is essential to getting the most out of expert systems. More
specific details of the concepts presented in this chapter are discussed in
appropriate sections of the subsequent chapters. Chapter 3 covers problem
analysis. To be effective, the right problems must be selected for expert sys-
tems implementation. The principle of ‘““‘garbage in, garbage out” is also ap-
plicable here. Wrong problems lead to incorrect implementation of expert
systems.

Chapter 4 covers knowledge engineering. Knowledge acquisition is a crit-
ical aspect of the expert systems effort. If the knowledge collected is garbage,
the best that can be expected from a system is garbage. Chapter 5 presents
probabilistic and fuzzy reasoning. Chapter 6 presents fuzzy systems tech-
niques for handling uncertainty in expert systems. Chapter 7 presents neural
networks.

Chapter 8 covers neural-fuzzy networks. Chapter 9 presents the technique
of evolutionary computing. Chapter 10 presents an application to manufac-
turing. Chapter 11 presents an application to forecasting.

13
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Figure 2.1. Hierarchy of expert systems development process.

2.2 EXPERT SYSTEMS CHARACTERISTICS

By definition, an expert system is a computer program that simulates the
thought process of a human expert to solve complex decision problems in a
specific domain. This chapter addresses the characteristics of expert systems
that make them different from conventional programming and traditional de-
cision support tools. The growth of expert systems is expected to continue
for several years. With the continuing growth, many new and exciting appli-
cations will emerge. An expert system operates as an interactive system that
responds to questions, asks for clarification, makes recommendations, and
generally aids the decision-making process. Expert systems provide expert
advice and guidance in a wide variety of activities, from computer diagnosis
to delicate medical surgery.

Various definitions of expert systems have been offered by several authors.
A general definition that is representative of the intended functions of expert
systems is:

An expert system is an interactive computer-based decision tool that
uses both facts and heuristics to solve difficult decision problems based on
knowledge acquired from an expert.
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An expert system may be viewed as a computer simulation of a human
expert. Expert systems are an emerging technology with many areas for po-
tential applications. Past applications range from MYCIN, used in the medical
field to diagnose infectious blood diseases, to XCON, used to configure com-
puter systems. These expert systems have proven to be quite successful. Most
applications of expert systems will fall into one of the following categories:

* Interpreting and identifying
* Predicting

+ Diagnosing

» Designing

* Planning

* Monitoring

» Debugging and testing

* Instructing and training

+ Controlling

Applications that are computational or deterministic in nature are not good
candidates for expert systems. Traditional decision support systems such as
spreadsheets are very mechanistic in the way they solve problems. They op-
erate under mathematical and Boolean operators in their execution and arrive
at one and only one static solution for a given set of data. Calculation-
intensive applications with very exacting requirements are better handled by
traditional decision support tools or conventional programming. The best ap-
plication candidates for expert systems are those dealing with expert heuristics
for solving problems. Conventional computer programs are based on factual
knowledge, an indisputable strength of computers. Humans, by contrast, solve
problems on the basis of a mixture of factual and heuristic knowledge. Heu-
ristic knowledge, composed of intuition, judgment, and logical inferences, is
an indisputable strength of humans. Successful expert systems will be those
that combine facts and heuristics and thus merge human knowledge with
computer power in solving problems. To be effective, an expert system must
focus on a particular problem domain, as discussed below.

2.2.1 Domain Specificity

Expert systems are typically very domain specific. For example, a diagnostic
expert system for troubleshooting computers must actually perform all the
necessary data manipulation as a human expert would. The developer of such
a system must limit his or her scope of the system to just what is needed to
solve the target problem. Special tools or programming languages are often
needed to accomplish the specific objectives of the system.
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2.2.2 Special Programming Languages

Expert systems are typically written in special programming languages. The
use of languages like LISP and PROLOG in the development of an expert
system simplifies the coding process. The major advantage of these languages,
as compared to conventional programming languages, is the simplicity of the
addition, elimination, or substitution of new rules and memory management
capabilities. Some of the distinguishing characteristics of programming lan-
guages needed for expert systems work are:

Efficient mix of integer and real variables
* Good memory-management procedures

+ Extensive data-manipulation routines

* Incremental compilation

» Tagged memory architecture

+ Optimization of the systems environment
« Efficient search procedures

2.3 EXPERT SYSTEMS STRUCTURE

Complex decisions involve intricate combination of factual and heuristic
knowledge. In order for the computer to be able to retrieve and effectively
use heuristic knowledge, the knowledge must be organized in an easily ac-
cessible format that distinguishes among data, knowledge, and control struc-
tures. For this reason, expert systems are organized in three distinct levels:

1. Knowledge base consists of problem-solving rules, procedures, and
intrinsic data relevant to the problem domain.

2. Working memory refers to task-specific data for the problem under con-
sideration.

3. Inference engine is a generic control mechanism that applies the axio-
matic knowledge in the knowledge base to the task-specific data to
arrive at some solution or conclusion.

These three pieces may very well come from different sources. The infer-
ence engine, such as VP-Expert, may come from a commercial vendor. The
knowledge base may be a specific diagnostic knowledge base compiled by a
consulting firm, and the problem data may be supplied by the end user. A
knowledge base is the nucleus of the expert system structure. A knowledge
base is not a data base. The traditional data base environment deals with data
that have a static relationship between the elements in the problem domain.
A knowledge base is created by knowledge engineers, who translate the
knowledge of real human experts into rules and strategies. These rules and
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Figure 2.2. Expert systems organization and operating environment.

strategies can change depending on the prevailing problem scenario. The
knowledge base provides the expert system with the capability to recommend
directions for user inquiry. The system also instigates further investigation
into areas that may be important to a certain line of reasoning but not apparent
to the user.

The modularity of an expert system is an important distinguishing char-
acteristic compared to a conventional computer program. Modularity is ef-
fected in an expert system by the use of three distinct components, as shown
in Figure 2.2.

The knowledge base constitutes the problem-solving rules, facts, or intui-
tion that a human expert might use in solving problems in a given problem
domain. The knowledge base is usually stored in terms of if—then rules. The
working memory represents relevant data for the current problem being
solved. The inference engine is the control mechanism that organizes the
problem data and searches through the knowledge base for applicable rules.
With the increasing popularity of expert systems, many commercial inference
engines are coming onto the market. A survey of selected commercial infer-
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Figure 2.3. Integration of expert systems components.

ence engines is presented in the Appendix at the end of this book. The de-
velopment of a functional expert system usually centers around the
organization of the knowledge base. A functional integration of expert sys-
tems components is shown in Figure 2.3.

A good expert system is expected to grow as it learns from user feedback.
Feedback is incorporated into the knowledge base as appropriate to make the
expert system smarter. The dynamism of the application environment for
expert systems is based on the individual dynamism of the components. This
can be classified as follows:

* Most dynamic: Working memory. The contents of the working memory,
sometimes called the data structure, changes with each problem situation.
Consequently, it is the most dynamic component of an expert system,
assuming, of course, that it is kept current.

* Moderately dynamic: Knowledge base. The knowledge base need not
change unless a new piece of information arises that indicates a change
in the problem solution procedure. Changes in the knowledge base should
be carefully evaluated before being implemented. In effect, changes
should not be based on just one consultation experience. For example, a
rule that is found to be irrelevant under one problem situation may turn
out to be crucial in solving other problems.
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Least dynamic: Inference engine. Because of the strict control and coding
structure of an inference engine, changes are made only if absolutely
necessary to correct a bug or enhance the inferential process. Commercial
inference engines, in particular, change only at the discretion of the de-
veloper. Since frequent updates can be disruptive and costly to clients,
most commercial software developers try to minimize the frequency of
updates.

2.3.1 The Need for Expert Systems

Expert systems are necessitated by the limitations associated with conven-

tion

_
e

1

al human decision-making processes, including:

Human expertise is very scarce.

Humans get tired from physical or mental workload.

Humans forget crucial details of a problem.

Humans are inconsistent in their day-to-day decisions.

Humans have limited working memory.

Humans are unable to comprehend large amounts of data quickly.
Humans are unable to retain large amounts of data in memory.
Humans are slow in recalling information stored in memory.

A S A S i e

Humans are subject to deliberate or inadvertent bias in their actions.
Humans can deliberately avoid decision responsibilities.
1. Humans lie, hide, and die.

Coupled with these human limitations are the weaknesses inherent in con-
ventional programming and traditional decision-support tools. Despite the
mechanistic power of computers, they have certain limitations that impair
their effectiveness in implementing human-like decision processes. Conven-
tional programs:

1.
2.
3.

4,
5.

Are algorithmic in nature and depend only on raw machine power
Depend on facts that may be difficult to obtain

Do not make use of the effective heuristic approaches used by human
experts

Are not easily adaptable to changing problem environments
Seek explicit and factual solutions that may not be possible

2.3.2 Benefits of Expert Systems

Expert systems offer an environment where the good capabilities of humans

and

the power of computers can be incorporated to overcome many of the

limitations discussed in the previous section. Expert systems:
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1. Increase the probability, frequency, and consistency of making good
decisions

Help distribute human expertise
Facilitate real-time, low-cost expert-level decisions by the nonexpert
Enhance the utilization of most of the available data

Permit objectivity by weighing evidence without bias and without re-
gard for the user’s personal and emotional reactions

A

o

Permit dynamism through modularity of structure

~

Free up the mind and time of the human expert to enable him or her
to concentrate on more creative activities

8. Encourage investigations into the subtle areas of a problem

Expert Systems Are For Everyone. No matter which area of business one is
engaged in, expert systems can fulfill the need for higher productivity and
reliability of decisions. Everyone can find an application potential in the field
of expert systems. Contrary to the belief that expert systems may pose a threat
to job security, expert systems can actually help to create opportunities for
new job areas. Presented below are some areas that hold promise for new job
opportunities:

* Basic research

 Applied research

» Knowledge engineering

* Inference engine development

+ Consulting (development and implementation)
¢ Training

+ Sales and marketing

+ Passive or active end user

An active user is one who directly uses expert systems consultations to
obtain recommendations. A passive user is one who trusts the results obtained
from expert systems and supports the implementation of those results.

2.3.3 Transition from Data Processing to Knowledge Processing

What data has been to the previous generations of computing, knowledge is
to the present generation of computing. Expert systems represent a revolu-
tionary transition from the traditional data processing to knowledge process-
ing. Figure 2.4 illustrates the relationships between the procedures for data
processing and knowledge processing to make decisions. In traditional data
processing the decision maker obtains the information generated and performs
an explicit analysis of the information before making his or her decision. In
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Figure 2.4. Data processing versus knowledge processing.

an expert system knowledge is processed by using available data as the proc-
essing fuel. Conclusions are reached and recommendations are derived im-
plicitly. The expert system offers the recommendation to the decision maker,
who makes the final decision and implements it as appropriate. Conventional
data can now be manipulated to work with durable knowledge, which can be
processed to generate timely information, which is then used to enhance hu-
man decisions.

2.4 HEURISTIC REASONING

Human experts use a type of problem-solving technique called heuristic rea-
soning. Commonly called rules of thumb or expert heuristics, it allows the
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expert to arrive at a good solution quickly and efficiently. Expert systems base
their reasoning process on symbolic manipulation and heuristic inference pro-
cedures that closely match the human thinking process. Conventional pro-
grams can only recognize numeric or alphabetic strings and manipulate them
only in a preprogrammed manner.

2.4.1 Search Control Methods

All expert systems are search intensive. Many techniques have been employed
to make these intensive searches more efficient. Branch and bound, pruning,
depth-first search, and breadth-first search are some of the search techniques
that have been explored. Because of the intensity of the search process, it is
important that good search control strategies be used in the expert systems
inference process.

2.4.2 Forward Chaining

This method involves checking the condition part of a rule to determine
whether it is true or false. If the condition is true, then the action part of the
rule is also true. This procedure continues until a solution is found or a dead
end is reached. Forward chaining is commonly referred to as data-driven
reasoning. Further discussions of forward chaining are presented in subse-
quent chapters.

2.4.3 Backward Chaining

Backward chaining is the reverse of forward chaining. It is used to backtrack
from a goal to the paths that lead to the goal. Backward chaining is very
good when all outcomes are known and the number of possible outcomes is
not large. In this case, a goal is specified and the expert system tries to
determine what conditions are needed to arrive at the specified goal. Back-
ward chaining is thus also called goal-driven. More details are provided on
the backward chaining process in Chapter 5.

2.5 USER INTERFACE

The initial development of an expert system is performed by the expert and
the knowledge engineer. Unlike most conventional programs, in which only
programmers can make program design decisions, the design of large expert
systems is implemented through a team effort. A consideration of the needs
of the end user is very important in designing the contents and user interface
of expert systems.
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2.5.1 Natural Language

The programming languages used for expert systems tend to operate in a
manner similar to ordinary conversation. We usually state the premise of a
problem in the form of a question, with actions being stated much as when
we verbally answer the question, that is, in a “‘natural language” format. If,
during or after a consultation, an expert system determines that a piece of its
data or knowledge base is incorrect or is no longer applicable because the
problem environment has changed, it should be able to update the knowledge
base accordingly. This capability would allow the expert system to converse
in a natural language format with either the developers or users.

Expert systems not only arrive at solutions or recommendations, but can
give the user a level of confidence about the solution. In this manner, an
expert system can handle both quantitative and qualitative factors when an-
alyzing problems. This aspect is very important when we consider how in-
exact most input data are for day-to-day decision making. For example, the
problems addressed by an expert system can have more than one solution or,
in some cases, no definite solution at all. Yet the expert system can provide
useful recommendations to the user just as a human consultant might do.

2.5.2 Explanations Facility in Expert Systems

One of the key characteristics of an expert system is the explanation facility.
With this capability, an expert system can explain how it arrives at its con-
clusions. The user can ask questions dealing with the what, how, and why
aspects of a problem. The expert system will then provide the user with a
trace of the consultation process, pointing out the key reasoning paths fol-
lowed during the consultation. Sometimes an expert system is required to
solve other problems, possibly not directly related to the specific problem at
hand, but whose solution will have an impact on the total problem-solving
process. The explanation facility helps the expert system to clarify and justify
why such a digression might be needed.

2.5.3 Data Uncertainties

Expert systems are capable of working with inexact data. An expert system
allows the user to assign probabilities, certainty factors, or confidence levels
to any or all input data. This feature closely represents how most problems
are handled in the real world. An expert system can take all relevant factors
into account and make a recommendation based on the best possible solution
rather than the only exact solution.

2.54 Application Roadmap

The symbolic processing capabilities of Al technology lead to many potential
applications in engineering and manufacturing. With the increasing sophisti-
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Figure 2.5. Application roadmap for expert systems.

cation of Al techniques, analysts are now able to use innovative methods to
provide viable solutions to complex problems in everyday applications. Figure
2.5 presents a structural representation of the application paths for artificial
intelligence and expert systems.

2.5.5 Symbolic Processing

Contrary to the practice in conventional programming, expert systems can
manipulate objects symbolically to arrive at reasonable conclusions to a prob-
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Figure 2.6. Collection of common objects.

lem scenario. The object drawings in this section are used to illustrate the
versatility of symbolic processing by using the manipulation of objects to
convey information. Let us assume that we are given the collection of five
common objects as shown in Figure 2.6. The objects are Head, Hammer,
Bucket, Foot, and Bill (as in doctor’s bill). We can logically arrange a subset
of the set of given objects to convey specific inferences. In Figure 2.7, four
of the five objects are arranged in the order Hammer, Head, Foot, and Bucket.
This unique arrangement may be represented by the equation presented below:

Hammer ~ Head = Foot ~ Bucket

It is desired to infer a reasonable statement of the information being con-
veyed by the symbolic arrangement of objects in Figure 2.7. Figure 2.8
presents an alternative arrangement of another subset (hammer, foot, foot, and
bill) of the given objects. This alternative arrangement may be represented
by the equation shown below:
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Figure 2.7. Arrangement of common objects.

Hammer ~ Foot = Foot ~ Bill

It is desired to infer a reasonable statement from Figure 2.8. It should be
noted that ordinary mathematical reasoning concerning the equation hammer
~ foot = foot ~ bill might lead to Hammer = Bill. However, in artificial
intelligence symbolic reasoning, the context of the arrangement of the objects
will determine the proper implication.

Figure 2.7: If Hammer smashes Head, then victim kicks the bucket (i.e.,
dies). In this case, the action part of the statement relates to an action
(a fatal one) by the victim of the assault.

Figure 2-8: If Hammer smashes Foot, then assailant foots the bill. In this
case, the action part of the statement relates to a compensatory action
(restitution) by the assailant.

Using a finite set of symbolic objects, we can generate different pieces of
information with different permutations of the objects. A particularly inter-
esting aspect of symbolic processing is noted in Figure 2.8. The object Foot

\\(/&Df>

Figure 2.8. Alternate arrangement of objects.
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conveys one meaning when concatenated with one given object (Hammer)
and another totally different meaning when concatenated with another object
(bill). In fact, the identification of the object Bill is itself symbolically con-
veyed by the contents of the medical bill in Figure 2.6. With the illustrated
capability of symbolic processing, very powerful Al-based tools can be de-
veloped for practical applications. However, more research and development
efforts will be needed before many of those practical applications can be
realized.
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PROBLEM ANALYSIS

This chapter addresses the problem of selecting an appropriate problem for
expert systems application. This is the first step in the expert systems devel-
opment process and must be carefully investigated.

3.1 PROBLEM IDENTIFICATION

The selection of an appropriate problem is extremely important and is a major
factor in determining the success of expert systems. A good problem for
expert systems is one that has the following characteristics:

The problem affects many people.
There is enough concern about the problem.
The problem is in a domain where experts are in short supply.

Ll

Solving the problem has the potential for significant time and cost sav-
ings.
5. There is a reliable and accessible source of knowledge to be acquired.

Problem identification refers to the recognition of a situation that consti-
tutes a problem to the organization. Problem identification requires the rec-
ognition of a window of opportunity to utilize expert systems. Both the
problem domain and the specific problem must be identified. A problem do-
main refers to the general functional area in which the problem is located.
For example, the general problem of engineering design constitutes a problem
domain that design engineers will be interested in. Within engineering design,
the specific problem may be that of designing a flexible manufacturing sys-
tem. The identification of a problem may originate from any of several factors.
Some of the factors are:

28
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Once the general problem area has been identified, the next function is to
decide what to do about the problem. Several options may be available in
addressing the problem. These include:

Ignoring the problem

Denying that the problem exists

Devising an alternative that circumvents the problem
Deferring a solution to the problem

Confronting the problem and finding a solution to it

M NS

If the problem is to be confronted and solved, then a thorough analysis of
the problem must be performed. The results of the analysis will indicate the
specific approach that may be suitable in tackling the problem.

3.2 PROBLEM ANALYSIS

Problem analysis involves the evaluation of the characteristics associated with
a given problem. The input—output process of the problem should be exam-
ined. Figure 3.1 presents a representation of the interface between inputs and
outputs in a problem scenario. An analysis of the problem may reveal that
computer solution is either not necessary or very essential. One should not
embark upon a computer approach without first understanding the fundamen-
tal issues involved in the problem. Expert systems should be seen as a tool
to solving a problem rather than the focus of the problem. The specific issues
to be analyzed are presented below. For example, in engineering applications
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there may be a tendency to place too much emphasis on computer applications
rather than engineering fundamentals. Expert systems should be used to im-
plement engineering fundamentals after the fundamentals are fully understood
in the light of the prevailing problem.

3.2.1 Scope of the Problem

The problem to be considered for expert system application should be well
bounded and focused to prevent combinatorial explosion in the solution struc-
ture.

3.2.2 Symbolic Nature of the Problem

Problems that are numerically involved and algorithmic in nature may not be
suitable for expert systems. The potential for symbolic representation and
processing in the given problem should be evaluated. Symbolic processing
refers to the use of symbols or strings of characters and data structures to
convey problem characteristics. Conventional high-level programming lan-
guages such as FORTRAN and BASIC are good for numeric processing but
poor for symbolic processing. Symbolic processing requires special-purpose
languages such as LISP (List Processing) and PROLOG (Programming in
Logic). If a problem does not have the characteristics suitable for symbolic
representation, it may not be a suitable candidate for expert systems appli-
cation.

3.2.3 Solution Time

The length of time needed to generate a solution to the problem is a major
factor in determining the suitability for expert systems application. If a prob-
lem requires several weeks to solve, then it may not be suitable for an expert
system. In such a large problem, an expert system may help provide inter-
mediate solutions that are needed to arrive at the overall solution. Thus, an
expert system can serve as an aid in a multistage solution process. On the
other hand, if a problem requires very little time to solve, for example a few
seconds, it may be too trivial to justify the expense of developing an expert
system.

3.2.4 Frequency of Problem Occurrence

The frequency with which a problem occurs can also determine the approach
to addressing the problem. A problem that occurs frequently enough to be a
nuisance to regular operations is a good candidate for expert systems. A
problem that occurs only once in a long while may not be a good candidate
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Figure 3.2. Intersection of data, knowledge, and problem.

unless it is very difficult to solve when it does occur and possesses the po-
tential for great catastrophe if it is not solved.

3.2.5 Optimization versus Satisficing

A decision on whether to accept a satisfactory solution in place of the best
solution can affect whether or not a problem needs the services of an expert
system. Optimization requires the best solution available for a specific prob-
lem. Optimal solutions are normally produced by algorithmic models. These
models can be implemented conveniently in conventional programming en-
vironments and do not need expert systems application. Satisficing models
provide trade-off strategies for achieving a satisfactory solution to a problem
within given constraints. These models are helpful for cases when time lim-
itation, resource shortage, and performance requirements constrain the solu-
tion of a problem or in cases where an optimal solution is not possible. If the
trade-off between best and satisfactory solutions is acceptable, then an expert
system may be required.

3.2.6 Data and Knowledge Availability

A complete analysis of a problem will help determine if the data needed to
solve the problem can be obtained. A match must be made between data
availability, knowledge availability, and problem characteristics, as shown in
Figure 3.2. The objective is to increase the intersection of the data availability,
knowledge availability, and problem requirements as much as possible. Not
only must an expert with the right knowledge be available, but the expert
must also be willing to make his or her expertise available for solving the
problem under consideration.
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Most engineering problems have essential elements in common. If these
elements are clearly outlined, an engineer can properly perceive, formulate,
structure, and analyze the problem environment. The essential elements of
engineering problems include problem statement, information, performance
measure, solution model, and solution implementation. The steps involved in
the solution approach are outlined below:

Step 1: Problem statement. A problem involves choosing between com-
peting, and probably conflicting, alternatives. The components of
problem-solving in engineering include:

* Describing the problem.

* Defining a model to represent the problem.
* Solving the model.

Testing the solution.

* Implementing and maintaining the solution.

Problem definition is not a trivial task. In many cases, we recognize symp-
toms of a problem more readily than we recognize its cause and location.
Even after the problem is accurately identified and defined, a benefit/cost
analysis may be needed to determine if the cost of solving the problem is
justified.

Step 2: Data and information requirements. Information is the driving force
or fuel for any solution. Information clarifies the relative states of past,
present, and future events in the problem scenario. The collection, stor-
age, retrieval, organization, and processing of raw data are important
components for generating information. Without data, there can be no
information. Without good information, there cannot be any valid so-
lution. The essential requirements for generating information for solving
a problem include:

Ensuring that an effective data-collection procedure is followed.

* Determining the type and the appropriate amount of data to collect.
 Evaluating the cost of collecting the required data.

 Evaluating the data collected with respect to information potential.

For example: Suppose a manager is presented with a recorded fact that
says, “Sales for the last quarter are 10,000 units.” This constitutes ordinary
data. There are many ways of using these data to make a decision, depending
on the manager’s value system. An engineering analyst, with the aid of an
expert system, can ensure the proper use of the data by transforming it into
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information, such as “Sales of 10,000 units for last quarter are low.” With

this type of information, the manager could develop a more definite course
of action.

Step 3: Performance measure. The decision maker assigns a perceived
worth or value to the available alternatives. Setting a measure of per-
formance is crucial to the process of defining and generating recom-
mendations in an expert system environment.

Step 4: Solution model. A solution model provides the basis for the analysis
and synthesis of information and is the platform over which competing
alternatives are compared. To be effective, a solution model must be
based on a systematic and logical framework for guiding solution steps.
A solution model can be a verbal, graphical, or mathematical represen-
tation of the ideas in the solution process. A solution model has the
following characteristics:

It is a simplified representation of an actual situation.

« It explains, simulates, and predicts the actual situation.

It need not be complete or exact in all respects.

« It emphasizes the most important relationships in the decision process.
« It permits experiments that advance the understanding of the problem.
* It can be used repeatedly for similar problem scenarios.

The formulation of a solution model has three essential components:

1. Abstraction: Determining the relevant factors in the problem
2. Construction: Combining the factors into a logical model
3. Validation: Ensuring that the model adequately represents the problem

There are five basic types of solution models applicable to engineering and
manufacturing problems:

1. Descriptive models directed at describing a decision scenario and iden-
tifying the associated problem. For example, a project analyst might use
a critical path method (CPM) network model to identify bottleneck tasks
in a project.

2. Prescriptive models furnish procedural guidelines for implementing ac-
tions. A managerial model for achieving communication, cooperation,
and coordination in a problem environment is an example of a prescrip-
tive model.

3. Predictive models are used to predict future events in a problem envi-
ronment. They are typically based on historical data about the problem
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situation. For example, a regression model based on past data may be
used to predict future productivity gains associated with expected levels
of resource allocation in a manufacturing operation.

4. Satisficing models provide satisfactory solutions rather than optimized
solutions to a problem. The models are needed for cases where optimal
solution may not be achievable.

5. Optimizing models are designed to find the best available solution to a
problem subject to a certain set of constraints. For example, a linear
programming model can be used to determine the optimal product mix
in a production environment.

In many situations, two or more of the above models may be involved in
the solution of a problem. For example, a descriptive model might provide
insights into the nature of the problem, an optimization model might provide
the optimal set of actions to take in solving the problem, a satisficing model
might modify the optimal solution based on practicality, a prescriptive model
might suggest the procedures for implementing the selected solution, and a
predictive model might predict the expected outcome of implementing the
solution. A good analysis of the problem to be solved will indicate where an
expert system may be suitable in the overall problem scenario.

Step 5: Obtaining the solution. Using the available data, information, and
the solution model, an expert system can determine the real-world ac-
tions that are needed to solve the problem at hand. These actions are
then presented to the user in terms of recommendations. A sensitivity
analysis may be incorporated into the design of the expert system to
determine what changes in parameter values might cause a change in
the solution.

Step 6: Implementing the solution. A solution represents the selection of
an alternative that satisfies the objective stated in the problem statement.
A good solution is useless until it is implemented. Therefore, an im-
portant aspect of a solution generated by an expert system is the strategy
needed to implement the solution. Some of the factors that may affect
the implementation of a solution include:

* Technical aspects of the solution.

* Managerial aspects of the solution.

* Resources required to implement the solution.

* Cost of implementing the solution.

* Time frame needed for implementing the solution.

3.3 DATA REQUIREMENT ANALYSIS

A good problem for an expert system is one in which there is a general
agreement on the facts of the problem domain and in which clear boundaries
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of the problem area and data sets can be determined. Just like human experts,
expert systems do not always arrive at the best possible solutions at all times.
An expert system will sometimes generate better solutions than a real expert
and will sometimes generate inferior solutions based on the prevailing set of
data. A problem selected for an expert system implementation should be such
that the user is willing to accept imperfect solutions based on whatever im-
perfection may be associated with the available data. Consequently, a careful
analysis of the data requirements for expert systems problems should be per-
formed.

An expert system knowledge engineer often deals with different types of
measurement scales depending on the particular problem being considered.
The problem analysis and solution approach will be influenced by the types
of data and measurement scales to be used. The symbolic processing approach
of expert systems requires an understanding of the different types of data
available in a problem. The different types of data-measurement scales are
presented below:

Nominal scale is the lowest level of measurement scales. It classifies items
into categories. The categories are mutually exclusive and collectively ex-
haustive. That is, the categories do not overlap and they cover all possible
categories of the
characteristics being observed. Examples of data using the nominal scale are
sex, job classification, color, and name.

Ordinal scale is distinguished from a nominal scale by the property of
order among the categories. An example is the process of assigning course
grades based on the order of student scores. A grade of A is known to be
better than a grade of B, but there is no indication of how much better it is.
Similarly, first is ahead of second, which is ahead of third, but there is no
indication of the relative spacings between the categories. Other examples of
data on an ordinal scale are high/medium/low, thick/thin, good/bad, and so
on.

Interval scale is distinguished from an ordinal scale by having equal in-
tervals between the units of measure. The assignment of scores ranging from
0 to 100 to student projects is an example of a measurement on an interval
scale. A score of zero on a project does not imply that the student getting the
zero knows absolutely nothing about the subject of the project. Temperature
is a good example of an item that is measured on an interval scale. Even
though there is a zero point on the temperature scale, it is an arbitrary relative
measure. It cannot be determined that an item is 0° cold simply by touching
it because different people will have different levels of sensitivity to cold.
Other examples of interval scale are IQ measurements and aptitude ratings.

Ratio scale has the same properties of an interval scale, but with a true
zero point. For example, an estimate of zero processing time for a computer
task is a ratio scale measurement. Other examples of items measured on a
ratio scale are volume, length, height, weight, and inventory level. In an expert
system, a mixture of the different types of data scales will be needed in
implementing heuristics to arrive at acceptable solutions.
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In addition to the measurement scale, data can be classified based on their
inherent nature. Examples of the relevant classifications are transient data,
recurring data, static data, and dynamic data.

Transient data is defined as a volatile set of data that is encountered once
during an expert system consultation and is not needed again. Transient data
need not be stored in a permanent database record unless it may be needed
for future analysis or uses.

Recurring data refers to data that are encountered frequently enough to
necessitate storage on a permanent basis. Recurring data may be further cat-
egorized into static data and dynamic data. Recurring data that are static will
retain their original parameters and values each time they are encountered
during an expert system consultation. Recurring data that are dynamic have
the potential for taking on different parameters and values each time they are
encountered.

3.4 EXPERT SYSTEM JUSTIFICATION

Expert systems are suitable for knowledge-intensive problems that are typi-
cally solved by human experts. Because expert systems depend on human
knowledge, if human experts are unable to solve a given problem, no suc-
cessful expert system can be developed to solve the problem either. When
the demand for human expertise surpasses the availability of experts, an expert
system may be the tool for handling the situation. The justification of using
an expert system for a selected problem depends on the primary goal of the
organization and the types of alternatives available.

This section presents the use of analytic hierarchy process (AHP) in the
justification of expert systems. Expert system justification should be per-
formed after an appropriate problem has been selected and before too much
time and effort have been committed to the development effort. Many of the
expert systems now under development for various applications are being
developed without any formal attempt to justify the need for them. The lack
of proper justification is partly responsible for the cases where some expert
systems have not delivered the much-advertised benefits. Expert systems may
be developed for several reasons, including strategic necessity, tactical needs,
and economic consideration. A proper justification of expert systems will
ensure that the systems are developed and deployed in the most appropriate
functions with the greatest potential for success. The potential of expert sys-
tems can be best matched with practical applications through formal justifi-
cation processes.

The justification of an expert system is essentially the same as the justifi-
cation of any new technological tool, where the quantification of the specific
cost improvements based on experience may be difficult or impossible. The
justification of an expert system will be determined by the system’s effect-
iveness in major and subtle areas of improvement such as reduction in inven-
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tories, better raw material management, better control of work in progress,
more accurate decisions, better resource utilization, reduction in rework and
rehandling, improved employee morale, productivity improvement, better
planning, increased consistency, and better service delivery. Robust justifica-
tion techniques can help in handling both the qualitative and quantitative as
well as the subjective aspects of the contribution of an expert system in solv-
ing a problem of value to the organization.

The consistency, promptness, and accuracy of decisions offered by expert
systems can facilitate better throughput in a production environment or im-
prove personnel productivity in a service environment. Machine times that
previously had been idle could then be put to productive use. The increased
capacity and output (subject to market constraints) can generate real economic
benefits for the organization. Many production facilities have inherent flexi-
bilities that can only be identified through automated reasoning tools such as
expert systems. With its capability to process large amounts of data and res-
ident knowledge, an expert system can point out areas where flexibilities such
as equipment substitution or material replacement are possible without jeop-
ardizing the desired product quality. The consistency of decisions and actions
provided by expert systems can help in producing products with consistent
quality characteristics.

The increased utilization of equipment and resources due to the effect of
using expert systems may be quantitatively evaluated as shown below. Every
system has an output that has a value per unit. If an expert system reduces
the idle time of equipment by reducing down time or forced idle time, then
the cost gain may be computed as:

V = vAT
where

V = value produced per unit time of operation
v = revenue per unit of standard time
AT = increased production time (reduction in idle time)

Transition costs can be defined if the value (V) of an employee at a full
experience level can be defined. There are some jobs in which job experience
and not training is the major determinant of effectiveness. Examples are ship-
ping clerks, who must know railroad freight rate systems, insurance clerks,
merchandise clerks, inspectors, and so on. A reasonable argument is that an
employee’s value is worth his or her direct cost plus overhead plus profit on
total cost. If such an employee is only 50% efficient, then one-half of this
value is lost per day. On the other hand, if the employee is 50% more efficient
due to the use of expert systems, then one-half of his or her cost will be
saved. Suppose an employee has a job whose task is difficult, “difficult”” being
defined as the fact that a task can be performed with probability p and not
performed with probability 1 — p by a normally effective employee. If an



38 PROBLEM ANALYSIS

employee increases his probability of performance by 8, then his new real
value is (1 + 8)V. This can then be translated to measurable units for inclusion
in the justification process. The preceding discussions present some of the
factors that may be relevant to the justification process. These factors and
other qualitative and quantitative measures can be incorporated into compre-
hensive multiattribute evaluation methodologies.

To evaluate properly whether the installation of an expert system is justi-
fied, we must first determine exactly what the system is expected to accom-
plish. This is why a thorough problem analysis is essential. The specification
for an expert system can begin as general statements of the expectations, but
it must be reduced to a list of measurable criteria before a justification ap-
proach can be implemented. We must determine how the performance or the
contribution of the expert system can be measured or estimated. This is the
most difficult portion of the justification process and certainly one of the most
important. Many of the sources for the data needed for justification will have
some subjective nature. For this reason, methodologies that permit the incor-
poration of subjective data are of utmost importance in the justification of
expert systems. Such a methodology is the analytic hierarchy process.

Economic analysis is the process of evaluating alternatives on the basis of
cost and revenue implications. The conventional methods of justification are
based on quantitative measures of worth of an alternative. In expert systems
technology, many tangible and intangible, quantitative and qualitative factors
intermingle to compound the justification process. Multiattribute methodolo-
gies integrate both objective and subjective factors. Expert systems may be
justified on the basis of an integrated evaluation of economic, analytic, and
strategic attributes.

Examples of strategic benefits of expert systems include better employee
morale, better competitive edge, better insulation against labor uncertainties,
better use of information resources, and ability to keep pace with technology.
Examples of tactical benefits of expert systems include reduced processing
time, higher throughput, better process control, improved quality, improved
productivity, better consistency, faster response time, more accurate decisions,
and improved data utilization. Examples of economic benefits of expert sys-
tems include higher return on investment, better equipment utilization, re-
duced labor costs, shorter processing times, and lower operating overheads.
Analytic hierarchy process is an excellent method for evaluating the potential
hierarchical interactions of the several aspects of implementing expert sys-
tems.

The analytic hierarchy process (AHP) is a practical approach to solving
complex decision problems involving the comparisons of attributes or alter-
natives. The technique has been used extensively in practice to solve many
decision problems. Golden et al. present a comprehensive survey of the tech-
nique and its various applications [32]. Based on the previous successful
applications of the technique, it can be applied to the comparison of char-
acteristics and attributes involved in the justification of expert systems.
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In general, AHP enables decision makers to represent the hierarchical in-
teraction of many factors, attributes, characteristics, or alternatives. For ex-
ample, in expert systems technology transfer, AHP can be used to identify
which attribute should be the determining factor in selecting technology trans-
fer strategies. The general approach to using AHP includes the following
steps:

1. Develop the hierarchical structure for the decision problem.

2. Determine the relative weights of each alternative with respect to the
characteristics and subcharacteristics in the hierarchy.

3. Determine the overall priority score of each alternative.

4. Determine the indicators of consistency in making pairwise comparisons
of the characteristics and alternatives.

5. Make a final decision based on the results.

The hierarchy should be constructed so that elements at the same level are
of the same class and must be capable of being related to some elements in
the next higher level. In a typical hierarchy, the top level reflects the overall
objective or focus of the decision problem. Criteria, factors, or attributes on
which the final objective is dependent are listed at intermediate levels in the
hierarchy. The lowest level in the hierarchy contains the competing alterna-
tives through which the final objective might be achieved. After the hierarchy
has been constructed, the decision maker must undertake a subjective prior-
itization procedure to determine the weight of each element at each level of
the hierarchy. Pairwise comparisons are performed at each level to determine
the relative importance of each element at that level with respect to each
element at the next-higher level in the hierarchy. Figure 3.3 presents a flow-
chart of the implementation of AHP.

Figure 3.4 presents an example of a decision hierarchy for decision aid
alternatives for productivity improvement. The objective is to select and jus-
tify the best overall decision aid to satisfy a specified productivity improve-
ment need in an organization. Three possible systems or alternatives are
available. The justification problem is summarized as shown below:

Objective: Select best overall decision aid
Alternative 1: Manual process

Alternative 2: Expert systems

Alternative 3: Conventional program

The alternatives are to be compared on the basis of factors that the orga-
nization considers to be very important. Such factors may be determined
based on a combination of objectives relating to productivity improvement,
quality improvement, better customer satisfaction, better employee morale,
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economic feasibility, strategic importance, and so on. For the purpose of this
illustration, the following five attributes are used in comparing the alterna-

tives:

Attribute A:
Attribute B:
Attribute C:
Attribute D:
Attribute E:

Reliability
Consistency
Time savings
Adaptability
Flexibility

The first step in the AHP procedure involves developing relative weights

for the five attributes with respect to the objective at the next higher level in

the hierarchy. To come up with the relative weights, the attributes are com-
pared pair-wise with respect to their respective contributions to the objective.
The pairwise comparison is done through subjective evaluation by the deci-
sion maker(s). Table 3.1 shows the tabulation of the pairwise comparison of
the five attributes. Each of the attributes listed along the rows of the table is

compared against each of the attributes listed in the columns. Each number
in the body of the table indicates the degree of importance of one attribute

over the other on a scale of 1 to 9. A typical question that may be used to
arrive at the relative rating is:

“Do you consider consistency to be more important than time savings in
the selection of a decision aid for productivity improvement?”’

“If so, how much more important is it on a scale of 1 to 9?”
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TABLE 3.1. Pairwise Rating of Decision Attributes

Attributes Reliability Consistency Time savings Adaptability Flexibility
Reliability 1 1/3 5 6 5
Consistency 3 1 6 7 6
Time savings 1/5 1/6 1 3 1
Adaptability 1/6 1/7 1/3 1 1/4
Flexibility 1/5 1/6 1 4 1

Similar questions are asked iteratively until each attribute has been com-
pared with each of the other attributes. For example, in Table 3.1, attribute B
(Consistency) is considered to be more important than attribute C (Time sav-
ings), with a degree of 6 with respect to the selection of a decision aid. In
general, the numbers indicating the relative importance of the attributes are
obtained by using the following rules:

Equally important: Degree = 1
If attribute A is equally as important as attribute B,
Then the importance rating of A over B is 1.

Weakly more important: Degree = 3
If attribute A is weakly more important than attribute B,
Then the importance rating of A over B is 3.

Strongly more important: Degree = 5
If attribute A is strongly more important than attribute B,
Then the importance rating of A over B is 5.

Very strongly more important: Degree = 7
If attribute A is very strongly more important than attribute B,
Then the importance rating of A over B is 7.

Absolutely more important: Degree = 9
If attribute A is absolutely more important than attribute B,
Then the importance rating of A over B is 9.

Intermediate numbers are used as appropriate to indicate intermediate lev-
els of importance. If the comparison order is reversed (e.g., B versus A rather
than A versus B), then the reciprocal of the importance rating is entered in
the pairwise comparison table. For example, the following statements are
equivalent:

Consistency is more important than Time savings, with a degree of 6.
Time savings is more important than Consistency, with a degree of 1/6.

Because of its fractional rating, the second statement actually implies that
Time savings is less important than Consistency. The relative evaluation rat-
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TABLE 3.2. Matrix of Pairwise Comparisons of the Five Attributes

Attributes A B C D E
A 1.000 0.333 5.000 6.000 5.000
B 3.000 1.000 6.000 7.000 6.000
C 0.200 0.167 1.000 3.000 1.000
D 0.167 0.143 0.333 1.000 0.250
E 0.200 0.167 1.000 4.000 1.000
Column Sum 4.567 1.810 13.333 21.000 13.250

ings in Table 3.1 are converted to a matrix of pairwise comparisons, as shown
in Table 3.2. The entries in this Table are then normalized to obtain Table
3.3. The normalization is done by dividing each entry in a column by the
sum of all the entries in the column. For example, the first cell in Table 3.3
(i.e., 0.219) is obtained by dividing 1.000 by 4.567. Note that the sum of the
normalized values in each attribute column is 1.

The last column in Table 3.3 shows the normalized average rating asso-
ciated with each attribute. For example, the first entry in that column (i.e.,
0.288) is obtained by dividing 1.441 by 5 since there are five attributes. These
averages represent the relative weights (between 0.0 and 1.0) of the attributes
that are being evaluated. The relative weights show that attribute B (Consis-
tency) has the highest importance rating, 0.489. Thus, consistency is consid-
ered to be the most important factor in the selection of a decision aid for
productivity improvement. Table 3.4 presents a summary of the relative
weights of the attributes. Figure 3.5 presents a graphical representation of the
relative weights.

The relative weights of the attributes are denoted as w,. Thus, if the attri-
butes are numbered from 1 to 5, we would have the following:

w, = 0.288; w, = 0.489; w; = 0.086; w, = 0.041; and ws = 0.096

These attribute weights are valid only for the particular goal specified in

TABLE 3.3. Normalized AHP Matrix of Paired Comparisons

Row Row
Attributes A B C D E Sum Average
A 0219 0.184 0375 0286  0.377 1.441 0.288
B 0.656  0.551 0450 0333 0454 2444 0.489
C 0.044  0.094 0075 0.143  0.075 0.431 0.086
D 0.037  0.077  0.025 0.048  0.019  0.206 0.041
E 0.044 0.094  0.075 0.190  0.075 0.478 0.096

Column Sum 1.000 1.000 1.000 1.000 1.000 1.000
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TABLE 3.4. Summary of Attribute

Weights

Attributes Weights
Reliability 0.288
Consistency 0.489
Time savings 0.086
Adaptability 0.041
Flexibility 0.096

the AHP model for the problem. If another goal is specified, the attributes
would need to be reevaluated with respect to that new goal.

Since the initial pairwise comparisons of the attributes are done based on
subjective opinions of the people involved in the decision making, it is quite
possible that some elements of bias and inconsistency will be present in the
evaluations. To minimize bias and ensure some level of consistency, Saaty
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Figure 3.5. Relative weights of five attributes.
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TABLE 3.5. Pairwise Rating of Alternatives on the
Basis of Reliability

Alternatives Alt 1 Alt 2 Alt 3
Alt 1 1 1/3 1
Alt 2 3 1 2
Alt 3 1 1/2 1

proposed a procedure for calculating the consistency ratio associated with the
AHP methodology [87]. The consistency ratio gives a measure of the consis-
tency of the decision maker in comparing attributes and alternatives. All the
consistency ratios for the above example fall within the acceptable limit of
0.0 to 0.10.

After the relative weights of the attributes are obtained, the next step is to
evaluate the alternatives on the basis of the attributes. In this step, relative
evaluation rating is obtained for each alternative with respect to each attribute.
The procedure for the pairwise comparison of the alternatives is similar to
the procedure for comparing the attributes. Table 3.5 presents the tabulation
of the pairwise comparisons of the three alternatives with respect to attribute
A (Reliability). The table shows that alternative 1 and alternative 3 have the
same level of importance based on reliability. Examples of questions that may
be useful in obtaining the pair-wise rating of the alternatives are:

“Is alternative 1 better than alternative 2 with respect to reliability?”
“If so, how much better is it on a scale of 1 to 9?”

It should be noted that the comparisons shown in Table 3.5 are valid only
when the reliability of the alternatives is being considered. Separate pairwise
comparisons of the alternatives must be done whenever another attribute is
being considered. Consequently, for our example, we would have five separate
matrices of pairwise comparisons of the alternatives, with one matrix asso-
ciated with each attribute. Table 3.5 is the first one of the five matrices. The
other four are not shown due to space limitations. Each matrix is analyzed
and normalized by using the same procedure shown previously for Table 3.1.
The normalization of the entries in Table 3.5 yields the following relative
weights of the alternatives with respect to reliability:

Alternative 1: 0.21
Alternative 2: 0.55
Alternative 3: 0.24

Table 3.6 shows a summary of the normalized relative ratings of the three
alternatives with respect to each of the five attributes. The attribute weights
shown earlier in Table 3.4 are now combined with the system weights con-



46 PROBLEM ANALYSIS

TABLE 3.6. Relative Weights of the Three Alternatives with Respect to Each
Attribute

Attributes

Alternatives ~ Reliability Consistency Time Savings Adaptability Flexibility

Alternative 1 0.21 0.12 0.50 0.63 0.62
Alternative 2 0.55 0.55 0.25 0.30 0.24
Alternative 3 0.24 0.33 0.25 0.07 0.14

tained in Table 3.6 to obtain the overall relative weights of the alternatives as
shown below:

o; = Z (Wikij)

i
where

a; = overall weighted evaluation for alternative j.
= relative weight for attribute i.
k, = evaluation rating for alternative j with respect to attribute i. This is
often referred to as the local weight of the alternative.
w;k,. = a measure representing the global weight of alternative j with respect
to attribute i. The sum of the global weights associated with an al-
ternative represents the overall weight, «;, of that alternative.

=
|

Table 3.7 shows the summary of the final AHP analysis for the example.
The three alternatives have been evaluated on the basis of all five attributes.
The question addressed by the AHP approach in this example is to determine
which alternative should be selected to satisfy the stated production goal
based on weighted evaluation of the relevant attributes. The summary in Table
3.7 shows that alternative 2 (Expert systems) should be selected since it has
the highest weighted rating, 0.484.

TABLE 3.7. Summary of AHP for Decision Aid Alternatives

Attributes
A B C D E

i=1 i=2 i=3 i=4 i=5
w, = 0.288 0.489 0.086 0.041 0.096
System j k; o
System 1 0.21 0.12 0.50 0.63 0.62 0.248
System 2 0.55 0.55 0.25 0.30 0.24 0.484
System 3 0.24 0.33 0.25 0.07 0.14 0.268

Column Sum 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 3.6. Histogram of overall weights of three alternatives.

Figure 3.6 presents a bar chart of the relative weights of the three alter-
natives. The segments in each bar represent the respective rating of each
alternative with respect to each of the five attributes. The overall weighted
rating of an alternative is sometimes referred to as the alternative’s desirability
index or weight. Our illustrative example shows that expert systems are the
most desirable of the three alternatives considered.

3.4.1 Problem-Selection Guidelines

Summarized below are guidelines for selecting expert systems problems. The
guidelines are useful as a checklist to be used in conjunction with the other
discussions presented earlier in this chapter.

1. The expert system development effort should not address a problem so
difficult that it cannot be solved with the available resources and within
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the limits of anticipated development time. An experienced knowledge
engineer should develop a small prototype system and then evaluate the
results of this effort to decide whether or not to proceed with the full
development.

. An expert system should alleviate the difficulty that motivated the de-

velopment. Otherwise, the system will end up solving only a subset of
the problem that needs to be solved. When defining the problems to
solve, the development team should consider the needs of both the over-
all organization and the end users and try to resolve any basic conflicts
between them before seriously undertaking the project.

. The expert system should be concise and to the point. The system with

the largest number of rules is not necessarily the best system. If a prob-
lem appears to be too large, the scope of the project should be reduced.

. Choosing a problem that no one has ever solved will create an insur-

mountable bottleneck in the knowledge-acquisition process.

. The domain expert should have a collection of real cases readily avail-

able. These can be used for the perception of the difficulty of the task
and the system’s performance.

. Avoid problems that require strict structures and those that are numeric

in nature. These do not require much of the capabilities of expert sys-
tems because they do not require heuristics in their solutions. They can
be best handled by algorithmic computer programs.

. Make sure the pertinent knowledge in the problem can be represented.

For instance, interpretations made from certain sound and visual char-
acteristics are extremely difficult to represent in problems dealing with
pattern recognition.

After the expert system has been justified to be suitable for solving the

selected problem, the real task of acquiring the required knowledge, coding
the knowledge, and developing the expert system can start.
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KNOWLEDGE ENGINEERING

Knowledge acquisition is one of the key elements in the development of an
expert system. It is the process by which knowledge engineers acquire and
encode the knowledge that domain experts use to solve a given problem. The
success of an expert system depends on its ability to represent accurately the
problem-solving techniques of at least one domain expert. Because of its
criticality in the development process, knowledge acquisition is often asso-
ciated with what is known as the knowledge acquisition bottleneck.

Much research on knowledge acquisition has been carried out in the last
few years. Many differing theories exist on the subject. This chapter discusses
the several aspects that must be considered in the knowledge-acquisition pro-
cess and some procedures for enhancing the process. Because of the relative
importance of the domain expert, discussions are presented on the desired
characteristics of the expert and methods for choosing (and working with) a
good one. Several accepted knowledge acquisition techniques are explored.
The pros and cons of each technique are presented.

4.1 KNOWLEDGE-ACQUISITION PHASES

Knowledge acquisition is implemented in multiple phases. The phases involve
finding a good knowledge engineer, establishing the characteristics of the
knowledge to be acquired, choosing the domain expert, and transferring/
acquiring of knowledge.

4.1.1 The Knowledge Engineer

A knowledge engineer assumes the responsibility of modeling human reason-
ing and expertise in the form of a computer program. The variety of tech-
niques includes written documentation, past examples of human performance,
domain experts, and the knowledge engineer’s own expertise.

49
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Characteristics of a Good Knowledge Engineer. A good knowledge engineer
should have many of the following desirable characteristics:

+ Patience

» Perseverance

« Attentiveness

* Inquisitiveness

 Result orientation

+ Willingness to learn

» Congenial personality

¢ Technical credibility

* Good motivational skills

* Good organization skills

* Good technical background
» Receptiveness to suggestions
» Excellent communication skills

4.1.2 Knowledge Characteristics

The characteristics of knowledge to be acquired depend both on the nature
of the problem to be solved and on the type and level of expertise of the
domain expert. Figure 4.1 presents a model of knowledge transfer.

Sources of Knowledge. The characteristics of knowledge are often dictated
by the source of the knowledge to be acquired. Typical sources of knowledge
are:
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* Direct consultation with human experts

* Printed materials such as books

* Direct task observation

* Direct task performance

* Third-party accounts of expert procedures

Of all the available sources of knowledge, direct consultation with human
experts poses the greatest difficulty but offers the highest level of reliability.
By contrast, third-party accounts are the least reliable method of acquiring
knowledge. Books and other printed materials are particularly suitable as sta-
ble sources of knowledge. Handbooks, magazines, journals, and printed
guides can form the basis for an initial knowledge base. The initial knowledge
base may then be expanded with the aid of one or more experts. To acquire
knowledge from an expert, one must first choose the expert and secure the
expert’s cooperation.

4.1.3 Choosing the Expert

Experts can serve as knowledge engineers and knowledge engineers can serve
as experts. In some cases, expert systems are best designed, developed, and
implemented by experts themselves. That is, the domain expert can also be
the knowledge engineer. This is true for problems where the transfer of knowl-
edge is extremely complex. The domain expert can also serve as the knowl-
edge engineer in cases where the expert wishes to learn and experiment with
expert systems to capture his own expertise. If an expert becomes proficient
in the creation of knowledge bases, he or she may find that it offers the most
productive way of documenting new problem-solving techniques. The expe-
rience may also increase the expert’s awareness of his own techniques. The
process of knowledge extraction from oneself may reveal prevailing ineffi-
ciencies in the expert’s problem-solving approaches and help identify poten-
tial avenues for improvement.

In other cases, the consolidation of the roles of domain expert and knowl-
edge engineer is not recommended because bias may be introduced into the
expert system development process. For example, the choice of a development
tool, knowledge-representation scheme, and specific contents of the knowl-
edge base may be biased by the characteristics and background of the person
making the choice. A domain expert acting also as a knowledge engineer may
have preferences that a trained knowledge engineer might not even consider.

Several criteria may be used in identifying the best expert for a given
problem scenario. Some of the most common criteria are:

1. The expert must be able and willing to communicate personal knowl-
edge and experience.
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2. The expert must be outwardly cooperative.

3. The expert must be able to coordinate multiple functional responsibil-
ities.

4. The expert must have developed his or her domain expertise by actual
practice over a reasonable length of time.

5. The expert must be able to explicitly explain the methods used to apply
his or her expertise to the problem under consideration.

6. The expert must be easy to work with.

7. The expert must be willing to commit a substantial amount of time to
the development process.

One of the most significant criteria that can be used is the expert’s wide
acceptance as a true expert by his peers. If he is recognized by others in his
field as an expert, then his judgment is respected and reliable. Domain experts
should not be directly paid for their contribution to the knowledge-acquisition
process. Direct financial remuneration can be counterproductive because it
can lead to knowledge prostitution, in which case the expert furnishes his
knowledge to the highest bidder.

The Paradox of the Excellent Expert. One of the difficulties that may arise
in the selection of an expert is the inability of some experts to describe their
own reasoning techniques. They may be so proficient in solving the problems
in their domain that most of the processes are ingrained. Thus, experienced
experts solve problems without the use of conscious reasoning. This, of
course, makes it difficult for them to explain their solution approaches. A
better expert may be the one who is good at solving problems but is still at
the stage where he or she has to evaluate his or her actions and reasoning
approaches consciously. Such a fledgling expert may be better able to transfer
knowledge for expert systems purposes.

Due to their familiarity with the domain, good experts may also ignore
their own ‘“‘simple”” knowledge in an effort to extract deep knowledge. In
many cases, it is the simple knowledge that solves most of the problems.
Unfortunately, a very good expert may trivialize simple knowledge and
thereby deprive the expert system of an important resource. In general, good
domain experts should possess certain characteristics that must be considered
when selecting an expert for knowledge acquisition purposes:

A well-developed sense of perception

Ability to distinguish between relevant and irrelevant information
Ability to simplify and organize complicated problem scenarios
Strong oral and written communication skills

A strong sense of responsibility and accountability for decisions
Ability to adapt to changing problem conditions

SN N S
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7. Ability to perform under stress
8. Innovativeness
9. Respect for professional service

According to Harmon and King, a world-class expert has 50,000 to
100,000 bits of heuristic information about his particular specialty [35]. Fur-
ther, it is believed that it takes at least 10 years to accumulate 50,000 bits.
Therefore, as a minimum, the candidates being considered as experts should
have 10 years of study and practice in their fields. The view of this author is
that the length of experience is not as crucial as some authors suggest. In
some tasks, particularly in high-technology operations, the learning curve may
be such that a person can learn much within a short period of time. In other
tasks, the learning curve may be relatively flat, thereby precluding fast learn-

ing.

4.14 Knowledge Extraction versus Knowledge Acquisition

Sometimes it is essential to make distinctions between knowledge extraction
and knowledge acquisition [100]. Knowledge extraction may be viewed as
the actual solicitation of knowledge by asking or watching an expert. On the
other hand, knowledge acquisition can be viewed as the process that provides
for the creation of new concept structures or the rules that govern the struc-
tures. In other words, knowledge acquisition gives the person acquiring the
knowledge the opportunity to generate independently new approaches to solv-
ing problems in the domain under consideration. By comparison, knowledge
extraction merely uses the person doing the extracting as a medium for getting
knowledge from one point (the expert) to another point (the knowledge base).

Knowledge Discovery. One of the preliminary requirements of a knowledge
engineer is to become familiar with the domain in which he or she will be
working. This is the knowledge-discovery phase. Knowledge discovery is
necessary in the process of defining the size and characteristics of the domain.
It also allows the knowledge engineer to get a feel for the typical reasoning
scenarios, basic rules, and concepts of the domain. The knowledge engineer
must also learn the terminology of the domain at this time. Without an un-
derstanding of the language, consultation with experts will be difficult.
During the knowledge-discovery phase, it is important for the knowledge
engineer to keep an open mind. Preliminary consultations with several experts
and end users will uncover subtle problems inherent to the domain. For ex-
ample, the knowledge engineer may want to interview end users to find out
whether they prefer a long explanation of the decision by the expert system
or just a simple recommendation. An initial prototype of the high-level system
may be designed by the knowledge engineer before the formal knowledge
extraction using this discovered knowledge. This prototype can incorporate
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the basic structure of the task, such as the form of input and output to be
used by the expert system and the typical solutions or classes of solutions. In
acquiring knowledge, the knowledge engineer must evaluate the causative and
consequential relationships among the parameters in a problem. Figure 4.2
presents a model of the input/output relationships of problem parameters.

4.2 METHODS OF EXTRACTING KNOWLEDGE FROM
EXPERTS

Knowledge acquisition is not a science with predictable results. Expert sys-
tems developers must use knowledge-acquisition methodologies that fit the
problem situation and the needs of those involved in the acquisition process.
The domain expert is a key player in the knowledge acquisition process. The
knowledge engineer serves as the facilitator for knowledge elicitation, acqui-
sition, and representation. One or more experts may be consulted during the
preliminary stages of an expert system effort. This may be needed, for ex-
ample, to determine the scope of the problem domain. The first in-depth
attempt to elicit knowledge usually takes place after the initial knowledge
discovery. Hoffman discusses the problems of extracting knowledge from ex-
perts [42]. Presented below are some of the techniques for knowledge elici-
tation from an expert.

4.2.1 Interviews

The most popular and widely used form of expert knowledge extraction is
the interview. In the unstructured method of interview, the knowledge engi-
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neer sits with the expert and goes through the process of solving a problem.
The expert may describe the process verbally only or verbally while a task
is being performed. The knowledge engineer records the information and asks
spontaneous questions in order to obtain more information concerning the
expert’s problem-solving approaches. Some specific methods that are often
used during interviews for knowledge extraction include:

1. Problem discussion explores the kind of data, knowledge, and proce-
dures needed to solve specific problems.

2. Problem description requires that the expert describe a prototype prob-
lem for each category of answer in the domain.

3. Problem analysis presents the expert with a series of realistic problems
to solve explicitly while probing the rationale behind the reasoning
steps.

4. Refinement requires that the expert present a series of problems to solve
using the knowledge acquired during previous interviews.

5. Examination requires that the expert examine and critique the prototype
rules and control structure.

6. Validation requires the presentation of the sample problems solved by
the expert and the prototype system to other outside experts.

An unstructured interview may be used first in the preliminary stage of the
knowledge acquisition to obtain a large amount of general information. Later
a structured interview can be used to gain specific information about one
particular aspect of the expert’s technique. It is also useful to record the
interview on audio or videotape. Recording helps to document the interview
and also provides a way for the knowledge engineer to analyze the expert’s
verbal and facial gestures. However, recording alone is not enough; the knowl-
edge engineer must take good notes during interviews. Privacy is very im-
portant, and interruptions during interview sessions should be kept to a
minimum.

4.2.2 Open-Ended Interviews

This type of interview requires either a pilot knowledge base (possibly from
unstructured interviews) or a knowledge engineer with a significant amount
of domain knowledge. When a preliminary knowledge base exists, the expert
goes over the contents, making comments on each one. This way additions
or deletions may be made very quickly and easily. Tape recording this inter-
view may not be necessary, since the expert can write notes directly on a
copy of the pilot knowledge base. When the knowledge engineer possesses a
large amount of domain knowledge, the same process can take place. The
interview consists of specific questions directed at certain aspects of the do-
main. The expert answers the questions and elaborates where necessary.
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4.2.3 Advantages and Disadvantages of Interviews

In general, unstructured interviews have the advantage of generating a large
amount of data. This is especially true in the early stages of expert systems
development. It is the job of the knowledge engineer to keep the expert from
digressing to other unrelated topics and control the amount and detail of the
expert’s comments. The main disadvantage of interviews is that they are very
time-consuming. Unstructured interviews may take weeks to conduct and may
be very inefficient due to their informal nature.

Structured interviews may also be very time consuming because prelimi-
nary knowledge bases, by nature, may be very long and covering the material
may take a long time. This method, however, tends to be more efficient than
unstructured interviews.

In terms of the validity of the data, the effectiveness of interviews depends
mainly upon the skill of the interviewer in asking the right questions and the
skill of the expert in conveying his or her knowledge and techniques. Not all
experts have this skill. Some of the shortcomings associated with interviews
are:

1. There is often a tendency to focus on the leading items in a sequence
of events when reasoning about the entire problem sequence.

2. Easily available data sets are often utilized without regard to their
relevance.

3. There is often a tendency to be conservative in complex decision prob-
lems.

4. The manner in which data are presented may affect the ability to re-
trieve the inherent information.

5. Too much unnecessary data may complicate the problem scenario and
overwhelm the knowledge engineer.

6. People believe a fact because it is thought to be important. Conversely,
what is thought to be important is believed to be a fact.

7. There is often a tendency to use past successful strategies whether or
not they fit new situations.

8. There is often a tendency to remember the first and last items in a
sequence better than the middle ones.

9. There is often a tendency not to explore the subtle aspects of the
problem domain.

10. Dynamic memory is required when handling multiple pieces of infor-
mation with multiple levels of interactions.

4.2.4 Task Performance and Protocols

Observing an expert performing a familiar problem-solving task can be a very
productive way to gather detailed knowledge. In the case of early data gath-
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ering, the task may be simple or routine. This gives the knowledge engineer
the framework of the expert’s thought process. The expert must be encouraged
to think aloud while performing the task. Care must be taken, however, not
to interrupt this thought process except for reminders to keep to the subject
matter. The process may be videotaped or audio taped in order to obtain an
accurate record of the expert’s words and actions. The tapes can be analyzed
later by the knowledge engineer. The knowledge engineer may also ask the
expert to repeat the task, adding detailed comments as the process continues.
In this method of knowledge acquisition, the study of the expert’s actions is
sometimes called protocol analysis.

4.2.5 Analyzing the Expert’s Thought Process

After observing a knowledge acquisition task, the knowledge engineer should
conduct a structured interview in order to analyze the sequence of events
associated with the task. Questions that should be asked include:

“What led you from this conclusion to the next?”
“What data did you consider?”
“What past experiences came to mind at this point?”’

These questions are necessary to elicit further thoughts from the expert.
Verbal explanations must be evaluated in an effort to extract any of the
expert’s factual and heuristic knowledge. Internal dialogue used by the expert
may be indicated by phrases such as:

2

“Something tells me . . .
“I bet that is it . . .”
“This reminds me of . . .”
“The last time I saw this . . .

These phrases help to indicate the expert’s attempt to relate current problem
situation to previous experiences. The knowledge engineer must take care to
understand the expert’s reasoning process and adequately document it rather
than introducing his own methods of reasoning into the knowledge-acquisition
process. The performance of a simple task and the subsequent analysis of the
data gathered can be a very good source of detailed knowledge. The knowl-
edge engineer must be very observant, inquisitive, and skillful in his approach
to knowledge acquisition.

4.2.6 Constrained Task

The constrained task approach involves asking the expert to perform a task
under a certain constraint. The constraint can be a limit on the time allotted
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to examine a piece of evidence or reach a conclusion based on the facts
presented. This method provides information on the strategies and high-level
structures of the expert’s thought process. The objective of the constrained
task approach is to challenge the expert and bring out his or her intuitive
problem-solving approach.

4.2.7 Tough Case Method

The tough case method of knowledge acquisition involves providing the
expert with a tough test problem to solve. The test problems are selected from
a rare set of problems that occur only occasionally in the expert’s normal
function. The expert may be requested to use a tape recorder to record the
account of how a tough case is solved whenever it is encountered. The expert
is requested to think aloud during the solution process.

4.2.8 Questionnaires and Surveys

Questionnaires and surveys are other methods of knowledge acquisition.
Open-ended questionnaires ask the expert to describe the methods and rea-
soning used to solve a problem. This may be useful in the knowledge-
discovery stage to provide broad information. The disadvantage of this
approach is that the knowledge engineer is not present to moderate the expert
and make sure the responses are really relevant to the questions.

An alternative is to use a short-answer questionnaire format to elicit the
opinion of multiple experts quickly and easily. The information that can be
gathered with this method is usually limited to simple descriptions or tech-
niques. The knowledge engineer should be sufficiently educated in the domain
in order to create meaningful questions to be useful for short-answer ques-
tionnaires.

Forced-answer questionnaires can be used as a knowledge base-validation
tool. These questionnaires call for “‘yes” or ““no” or multiple-choice answers.
For example, forced-answer questionnaires may be used to validate a pro-
duction rule by asking whether the “if”’ clause really yields the “then’” clause.

4.2.9 Documentation and Analysis of Acquired Knowledge

Proper documentation should be accumulated throughout the knowledge-
acquisition effort. Written documentation, audio, and video records of the
knowledge acquisition sessions are essential for clarifying the expert’s rea-
soning process during the actual development of the knowledge base. Data
related to the acquired knowledge should be kept in an organized and easily
accessible format. The transcription of the interviews and verbal information
generates a great deal of additional written information. The documentation
and analysis should address the following:
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1. Transcription: Verbal exchanges during knowledge acquisition should
be documented in writing.

2. Phrase indexing: Key phrases in the problem domain should be indexed
with proper notes and references attached.

3. Knowledge coding: Knowledge elements acquired should be grouped
into descriptive and procedural categories.

The analysis of the acquired knowledge may be performed concurrently
with the knowledge-acquisition process. It is not necessary to wait until the
acquisition stage is complete before beginning the analysis. Concurrent anal-
ysis and validation can help identify areas that should be explored further
during the knowledge acquisition process.

4.2.10 Expert’s Block

Like writers that experience the legendary writer’s block, domain experts can
experience expert’s block. This happens when the expert cannot generate any
additional output for the knowledge-acquisition process. A skilled knowledge
engineer can help the expert by providing appropriate hints and posing prob-
ing questions that can resuscitate the expert’s reasoning process. If a complete
problem analysis has been performed as presented in Chapter 3, it should not
be very difficult to identify subtle elements of the problem domain that will
be useful in generating additional links to new problem-solving rules. If the
block persists, the knowledge-acquisition session should be temporarily ter-
minated and recommenced at a later time. The mutual interaction of the
knowledge engineer and the domain expert is presented in Figure 4.3. The
knowledge engineer provides the leads necessary for the expert to come up
with additional inferences.

4.3 KNOWLEDGE-ACQUISITION MEETINGS

Meetings are an important component of the knowledge-acquisition process.
Being able to manage knowledge-acquisition meetings effectively is an im-
portant skill for the knowledge engineer. If a knowledge-acquisition meeting
is poorly organized, improperly managed, or called at the wrong time, valu-
able cooperation may be lost very quickly. Meetings are essential for com-
munication and decision making related to the problem to be solved by the
proposed expert system. Some important points should be kept in mind for
knowledge acquisition meetings, including:

1. Carefully review the items to be discussed at the meeting and determine
which can be more effectively disseminated through brief memoranda.
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Figure 4.3. Interaction between domain expert and knowledge engineer.

The powers of desktop computers and electronic mail should be fully
exploited to complement knowledge-acquisition meetings.

2. Ensure that only those who need to be at the knowledge-acquisition

meeting are invited to be there. The point of diminishing returns for
any meeting is equal to the number of people actually needed for the
meeting. The larger the number of people at a meeting, the lower the
productivity of the meeting. The extra attendees only serve to generate
unconstructive and conflicting ideas that impede the success of the
meeting.

3. Those not invited to the knowledge-acquisition meeting should, how-

ever, be informed of how they may contribute to the process and how
the proceedings of the meeting may affect them.

4. The prospective end users of the proposed expert system should be

offered avenues through which may contribute to the knowledge-
acquisition process.

5. A knowledge acquisition meeting should not be allowed to degenerate

into a social gathering.

Some guidelines for conducting knowledge-acquisition meetings more ef-

fectively are:
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. Do pre-meeting homework:

* Clarify the problem area.

* Identify the topics to be discussed.

* Establish the desired outcome for each topic.

» Determine how the outcome will be verified.

» Determine who really needs to be there.

 Evaluate the suitability of meeting time and venue.

+ Allow enough time to address each topic.

¢ Identify complementary communication media (telephone, mail,
etc.).

Circulate a written agenda of the knowledge-acquisition process prior

to the meeting.

. Emphasize the importance of the problem domain and the criticality

of the knowledge-acquisition process in solving the problem.
Start the meeting on time.
Review the knowledge-acquisition agenda at the beginning.

Get everyone present at the meeting involved in the knowledge-
elicitation process by posing direct questions to each participant.

Keep to the agenda; do not add new items unless absolutely essential.

. Quickly resolve conflicts that may develop from diverging views of

domain experts.

Keep digression from the knowledge-acquisition mission to a mini-
mum.

Recap the accomplishments of each topic before going to the next.

Let those who have made commitments know what is expected of
them.

Evaluate meeting success relative to specified goals.
Adjourn the meeting on time.
Prepare and distribute the minutes or proceedings of the meeting.

Highlight the knowledge acquired through the knowledge-acquisition
meeting.

44 GROUP KNOWLEDGE ACQUISITION

Many problem situations are complex and poorly understood. No one person
has all the information to make all decisions accurately. As a result, crucial
decisions are better made by a group of people. Some organizations use out-
side consultants with appropriate expertise to make recommendations for im-
portant problem decisions. Other organizations, choosing not to go outside
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the organization, set up their own internal consulting groups that attend to
decision problems. Many companies now have internal expert systems con-
sulting groups geared towards providing technical assistance for expert sys-
tems development throughout the company. Decisions can be made through
linear responsibility, in which case one person makes the final decision based
on input from other people. Alternatively, decisions can be made through
shared responsibility, in which case a group of people shares the responsibility
for making joint decisions. The major advantages of group decision making
are:

1. Ability to share experience, knowledge, and resources: Many heads are
better than one. A group will possess greater collective ability to solve
a given decision problem.

2. Increased credibility: Decisions made by a group of people often carry
more weight in an organization.

3. Improved morale: Personnel morale can be positively influenced be-
cause many people have the opportunity to participate in the decision-
making and knowledge-acquisition processes.

4. Better rationalization: The opportunity to observe other people’s views
can lead to an improvement in an individual’s reasoning process.

Knowledge acquisition through group decision making can be achieved
using several approaches. Some of these approaches are discussed below.

4.4.1 Brainstorming

Brainstorming is a way of generating many new ideas. In brainstorming, the
decision group comes together to discuss alternative ways of solving a deci-
sion problem. The members of the brainstorming group may be from different
departments, may have different backgrounds and training, and may not even
know one another. The diversity of the constituents to create a stimulating
environment for generating many different ideas. The technique encourages
free outward expression of new ideas no matter how remote the ideas may
appear. No criticism of any new idea is permitted during the brainstorming
session. A major concern in brainstorming is that extroverts may take control
of the discussions. For this reason, an experienced and respected leader is
needed to manage the brainstorming discussions. The group leader establishes
the procedure for proposing ideas, keeps the discussions in line with the
group’s mission, discourages disruptive statements, and encourages the par-
ticipation of all members.

After the group runs out of ideas, open discussions are held to weed out
the unsuitable ones. It is expected that even the rejected ideas may stimulate
the generation of other ideas, which may eventually lead to other favored
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ideas. Some guidelines for improving the brainstorming session for knowl-
edge acquisition are:

» Focus on a specific problem to be solved.

» Keep ideas relevant to the intended knowledge-acquisition mission.
+ Be receptive to all new ideas.

 Evaluate the ideas on a relative basis after exhausting new ideas.

* Maintain an atmosphere conducive to cooperative discussions.

» Maintain documentation of the ideas generated and how they impact the
knowledge-acquisition process.

4.4.2 Delphi Method

The traditional approach to group decision making is to obtain the opinion
of experienced experts through open discussions. An attempt is then made to
reach a consensus among the experts. However, open group discussions are
often biased because of the influence of or even subtle intimidation by dom-
inant individuals. Even when the threat of a dominant individual is not pres-
ent, opinions may still be swayed by group pressure. This is often called the
bandwagon effect.

The Delphi method attempts to overcome these difficulties by requiring
individuals to present their opinions anonymously through an intermediary.
The method differs from the other interactive group methods because it elim-
inates face-to-face confrontations. It was originally developed for forecasting
applications, but it has been modified in various ways for application to dif-
ferent types of decision making. The method can be quite useful for knowl-
edge-acquisition purposes. It is particularly effective when decisions must be
based on a broad set of factors. The Delphi method is normally implemented
as follows:

1. Problem definition: A decision problem that is considered significant to
the organization is identified and clearly described.

2. Group selection: An appropriate group of experts or experienced indi-
viduals is formed to address the particular decision problem. Both in-
ternal and external experts may be involved in the Delphi process. A
leading individual is appointed to serve as the administrator of the de-
cision process. The group may operate through the mail or gather to-
gether in a room. In either case, all opinions are expressed anonymously
on paper. If the group meets in the same room, care should be taken to
provide enough room so that each member does not have the feeling
that someone may accidentally or deliberately spy on his or her re-
sponses.
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. Initial opinion poll: The technique is initiated by describing the problem

to be addressed in unambiguous terms. The group members are re-
quested to submit a list of major areas of concern in their specialty
areas as they relate to the decision problem.

. Questionnaire design and distribution: Questionnaires are prepared to

address the areas of concern related to the decision problem. The written
responses to the questionnaires are collected and organized by the ad-
ministrator. The administrator aggregates the responses in a statistical
format. For example, the average, mode, and median of the responses
may be computed. This analysis is distributed to the decision group.
Each member can then see how his or her responses compare with the
anonymous views of the other members.

. Iterative balloting: Additional questionnaires based on the previous re-

sponses are passed to the members. The members submit their responses
again. They may choose to alter or not to alter their previous responses.

. Silent discussions and consensus: The iterative balloting may involve

anonymous written discussions of why some responses are correct or
incorrect. The process is continued until a consensus is reached. A con-
sensus may be declared after five or six iterations of the balloting or
when a specified percentage (e.g., 80%) of the group agrees on the
questionnaires. If a consensus cannot be declared on a particular point,
it may be displayed to the whole group with a note that it does not
represent a consensus.

In addition to its use in technological forecasting, the Delphi method has

been widely used in other general decision making. Its major characteristics
of anonymity of responses, statistical summary of responses, and controlled
procedure make it a reliable mechanism for obtaining numeric data from
subjective opinion. The major limitations of the Delphi method are:

1. Its effectiveness may be limited in cultures where strict hierarchy,

seniority, age, or devout reverence for expertise influence decision-
making processes.

. Some experts may not readily accept the contribution of nonexperts to

the group decision-making process.

. Since opinions are expressed anonymously, some members may take

the advantage of the situation to make ludicrous statements. However,
if the group composition is carefully reviewed, this problem can be
avoided.

4.4.3 Nominal Group Technique

Nominal group technique is a silent version of brainstorming. Rather than
asking people to state their ideas aloud, the team leader asks each member
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to jot down a minimum number of ideas, for example, five or six. A single
list of ideas is then composed on a chalkboard for the whole group to see.
The group then discusses the ideas and weeds out some iteratively until a
final decision is reached. The nominal group technique is easier to control.
Unlike brainstorming, where members may get into shouting matches, it per-
mits members to present their views silently. In addition, it allows introverted
members to contribute to the decision without the pressure of having to speak
out too often.

In all of the group decision-making techniques, an important procedure
that can enhance and expedite the decision-making process is to require that
members review all pertinent data before coming to the group meeting. This
will ensure that the knowledge-acquisition process is not impeded by trivial
preliminary discussions. Some disadvantages of group decision making are:

1. Peer pressure in a group situation may influence a participant’s opinion
and contributions.

2. In a large group, some members may not get to participate effectively
in the discussions.

3. A member’s relative reputation in the group may influence how well
his or her opinion is received.

4. A member with a dominant personality may overwhelm the other mem-
bers in the discussions.

5. The limited time available to the group may create time pressure that
forces some members to present their opinions without fully evaluating
the ramifications of the available data.

6. It is often difficult to get all members of a decision group together at
the same time.

Despite the noted disadvantages, group decision making has many advan-
tages that can alleviate the shortcomings. The advantages as presented earlier
will have varying levels of effect from one problem situation to another. Team
knowledge acquisition can be enhanced by following the guidelines below:

Get a willing group of experts together.

Set an achievable goal for the group.

Determine the limitations of the group.

Develop a set of guiding rules for the group.

Create an atmosphere conducive to group synergism.

For major expert systems projects and extended knowledge-acquisition
activities, arrange for team training that allows the group to learn the
decision rules and responsibilities involved in the problem.

S
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Figure 4.4. Multidimensional factor relationships in knowledge acquisition.

4.5 KNOWLEDGE-ACQUISITION SOFTWARE

To aid in the difficult process of knowledge acquisition, knowledge engineers
and programmers have been developing software tools designed to gather
knowledge by interacting directly with the expert. Knowledge-acquistion soft-
ware offers distinct advantages over the traditional pencil-and-paper approach.
One of the advantages of knowledge-acquisition software is that the expert
may contribute to the knowledge base at his or her pace and convenience.
The tools can be classified into two categories: knowledge-elicitation tools
and induction-by-example tools.

4.5.1 Knowledge Elicitation Tools

These consist of computer programs that interact directly with the expert. The
expert enters information about the domain directly into a computer. The
program guides the expert through the classification and clarification pro-
cesses of knowledge-acquisition. Knowledge-acquisition software can inter-
actively manipulate the data collected from the expert by using various
statistical, clustering, and multidimensional data-organization techniques. Fig-
ure 4.4 shows a model of the interaction of knowledge elements in a multi-
dimensional format. Knowledge base rules are generated from the organized
data. Knowledge-acquisition software tools have been shown to be successful
alternatives to the traditional interactions between the knowledge engineer
and the expert [23, 96].

Newquist describes a knowledge-acquisition tool known as the Knowledge
Acquisition Module (KAM) [74]. This PC-based program can scan text and
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create rules, relationships, if—then statements, and heuristics based on con-
straints set by the expert. The program can scan the text of an interview with
an expert and generate relevant rules. Prerau discusses the techniques used
for acquiring knowledge for a multiparadigm expert system named COM-
PASS (Central Office Maintenance Printout Analysis and Suggestion System)
[83]. COMPASS was developed by GTE laboratories for telephone switching
system maintenance. OPAL (Oncology Protocol Acquisition Laboratory) is a
computer-based knowledge-acquisition tool developed at Stanford University
for the Oncocin project. Domain experts (physicians) interact directly with
the software to encode their knowledge. This removes the potential for knowl-
edge-acquisition bottleneck. OPAL has the advantage of giving the domain
expert some experience as a knowledge engineer.

One of the first commercial interactive knowledge-acquisition products was
Autolntelligence, developed by IntelligenceWare, Inc. Autolntelligence is an
automatic knowledge-acquisition system that captures the knowledge of an
expert through interactive interviews, condenses the knowledge, and then au-
tomatically generates an expert system. Through Autolntelligence, the time
and money spent in the interview process with the knowledge engineer is
saved and it is not necessary to know how to type in rules, since rules are
generated automatically. The system helps experts without a knowledge en-
gineer to capture their own expertise.

4.5.2 Induction-by-Example Tools

In this method, a program will infer rules based on examples generated by
the expert. The program models the decision-making process of the expert
based on the conclusions reached in the examples. Because there is a limit
to the number of unique examples the expert may generate, induction-by-
example programs are most effective for small expert systems. However, new
software techniques are being used to enhance the capability of induction-
based knowledge-acquisition programs so that they can handle large problem
domains.

Di Piazza and Helsabeck discuss a knowledge-acquisition program named
Laps [23]. Laps is a software package designed for interviewing experts. It
combines the functions of gathering, organizing, and testing knowledge re-
lated to specified problems. Laps begins with a case in the form of a sample
solution path elicited from the domain expert. This sample solution path is
refined by a process called dechunking, which facilitates finding a model of
the expert’s reasoning process. The model guides the determination of the
structure of alternatives by using an effective level of abstraction. The infor-
mation gathered is organized into tables that the expert uses to generate ad-
ditional rows of knowledge elements. The process is continued until a
complete knowledge base is developed. Knowledge-acquisition software
should not be developed to replace the roles of the knowledge engineer.
Rather, the software should be developed to aid both the expert and the knowl-
edge engineer produce more effective knowledge bases quickly.
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4.6 CHARACTERISTICS OF KNOWLEDGE

The purpose of knowledge representation is to organize the required knowl-
edge into a form such that the expert system can readily access it for decision-
making purposes. Knowledge does not always come compiled and ready for
use. The term “‘knowledge” is used to describe a variety of bits of under-
standing that enable people and machines to perform their intended functions.

4.6.1 Types of Knowledge

Knowledge can be broadly classified into two types: surface knowledge and
deep knowledge. The classification is based on the prevailing information
circumstances and the intended (conscious or subconscious) uses of knowl-
edge. Surface knowledge is based on heuristics and experience acquired from
having successfully solved many similar problems. Deep knowledge involves
reasoning from basic principles involving laws of nature and complex behav-
ioral models. Some of the characteristics of the two types are:

Surface knowledge:
+ Composed of situation and action pairs
+ Capable of solving simple domain problems
» Often used in cursory situations
* Faster to implement
Deep knowledge:
» Composed of cause-and-effect relationships
» Based on hierarchical cognition of events
+ Involves goals and plans to achieve the goals
+ Capable of solving difficult problems

Knowledge, whether surface or deep, must be extracted and encoded into
usable forms for solving problems. When deep knowledge is organized, in-
dexed, and stored in such a way that it is easily retrieved for solving problems,
we obtain what is known as compiled knowledge. Sometimes the source of
knowledge may be so dormant that a great deal of effort must be made to
extract it. Once extracted, an element of knowledge must undergo other trans-
formations before it can achieve an operational form. Extraction involves
eliciting the basic concepts of the problem domain from a reliable knowledge
source. The two major sources of knowledge are active human expertise and
latent expertise.

Active human expertise relates to the expertise available from an expert
who is currently active in solving problems in the problem domain. Latent
expertise refers to the type of knowledge available in the form of printed
material. This type of expertise is dormant until someone derives some use
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from it by converting the printed material into a usable form. Knowledge
extraction from the source of expertise is performed to obtain enough
problem-solving knowledge to develop an expert system knowledge base.
Heuristics constitute the key product of knowledge extraction from the source
of expertise. Once enough knowledge is available, the knowledge engineer
selects an appropriate scheme or technique for representing the knowledge.
The encoding of the knowledge base begins after the knowledge engineer has
selected the framework and knowledge-representation techniques. Before en-
coding, knowledge may be subdivided into declarative knowledge, which re-
fers to facts and assertions, and procedural knowledge, which refers to
sequence of actions and consequences. Declarative knowledge is associated
with knowing what is involved in solving a problem. Procedural knowledge
is associated with knowing how to apply appropriate problem-solving strat-
egies to solve a given problem. Declarative knowledge representation uses
logic-based and relational approaches. Logical representation involves the use
of propositional and predicate logic. Relational models are implemented by
using decision trees, graphs, or semantic networks. Procedural knowledge
representation involves the use of rule-based approaches to store the knowl-
edge of how to solve problems. The example below illustrates the difference
between declarative and procedural knowledge.

The complete table of the standard normal random variable widely used in prob-
ability and statistics analysis represents declarative knowledge encompassing a
large body of knowledge of the relationship between a value of the random
variable and the probability of observing a value less than or equal to that
particular value. By comparison, procedural knowledge refers to the compiled
sequence of the procedures and actions showing how to compute probabilities
using the normal table.

Declarative knowledge representation is usually more comprehensive and
difficult to implement, while procedural knowledge representation is more
compact and easy to implement. Many practical problems will require the use
of both declarative and procedural representations. The choice of a represen-
tation model will be dictated by the nature of the problem to be solved and
the type of knowledge available.

4.7 KNOWLEDGE-REPRESENTATION MODELS

A knowledge-based expert system performs the tasks that would normally be
performed by experts. For the expert system to be effective, the knowledge
acquired from the expert must be properly represented to prevent ambiguities
in the problem-solving procedures. Different knowledge-representation tech-
niques are available. Some techniques are suitable for a majority of prob-
lems typically encountered by expert systems. There are, however, some prob-



70 KNOWLEDGE ENGINEERING

lems that require unique knowledge representation approaches. The major
knowledge-representation models are:

Semantic networks

Frames

Production rules

Predicate logic

O-A-V (object-attribute-value) triplets
Hybrids

Scripts

Nk LD =

4.7.1 Semantic Networks

Semantic networks are the most general and perhaps the oldest representa-
tional structure for expert system knowledge base. They serve as the basis
for other knowledge representations. A semantic network structure is a
scheme for representing abstract relations among objects in a problem do-
main, such as membership in a class. Since most reasoning processes asso-
ciate objects based on classes and relationships of known objects, the semantic
network structure provides a general framework from which other represen-
tation methods can be derived.

Semantic networks consist of a collection of nodes that are linked to form
object relationships. Arcs linking nodes carry notations that indicate the type
of relationships. The nodes in a semantic network typically represent objects
or facts. Examples of object relationships are:

Gear is-a part-of a Rotor Assembly.
Gear can-be produced by Machining.
Machining is-done-in The-shop.
Rotor Assembly needs Inspection.

Such relationships may be represented graphically by a network of nodes
and links where nodes represent objects and links represent the relationships
among the objects. In this case the nodes would represent the objects Gear,
Rotor Assembly, Machining, The-shop, and Inspection. The links would rep-
resent the relations IS-A, PART-OF, CAN-BE, IS-DONE-IN, and NEEDS.
The network as a whole forms a taxonomy of the available knowledge. An
example of a semantic network for manufacture and inspection of a gear is
presented in Figure 4.5.

The IS-A relation establishes a property of inheritance in object hierarchy
in the network. Items lower in the network can inherit properties from items
higher up in the network. This permits concise representation since infor-
mation about similar nodes does not have to be repeated at each node. Se-
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Figure 4.5. Example of semantic network.

mantic networks have been used successfully to represent knowledge in
domains that use well-established taxonomies to simplify problem solving.
Some of the advantages of semantic networks are:

1. Flexibility in adding, modifying, or deleting new nodes and arcs
2. Ability to inherit relationships from other nodes
3. Ease of drawing inferences about inheritance hierarchy

The major disadvantage of semantic networks is the lack of a formal de-
finitive structure which makes it difficult to implement in an operational set-
ting. However, simple representation forms such as frames and rules can be
derived from the network.

4.7.2 Frames

A frame consists of a collection of slots that contain attributes to describe an
object, a class of objects, a situation, an action, or an event. Frames differ
from semantic networks in that frames contain a subset of the items that may
be represented in a semantic network. In a semantic network, information
about an object can be randomly placed throughout the knowledge base. By
contrast, in a frame, the information is grouped together into a single unit
called a frame. Frames are used for representing declarative knowledge. As
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Gear

Teeth Number 20
Assembly Rotor
Production Method Cutting
Delivery Date 9/2/91

Figure 4.6. Frame representation for gear production.

discussed earlier, declarative knowledge is knowledge that cannot be imme-
diately executed but can be stored and retrieved as needed to provide infor-
mation for solving a problem.

Frames provide a description of an object by using a tabulation of infor-
mation associated with the object. This organization of useful relationships
helps to mimic the way an expert typically organizes the information about
an object into chunks of data. Psychologists believe that when experts recall
the information about a particular object, all the typical attributes of the ob-
jects are recalled at the same time as a group. This grouping of object attri-
butes is what is known as a frame. Frame-based reasoning is based on seeking
items that fill the slots of information required to solve a problem. If a frame
is not relevant to a given problem situation, control will move to another
frame. Advantages of frames are:

1. Frames are arranged in a hierarchical manner such that they can inherit
relationships from other frames.

2. Frames facilitate faster searches of the knowledge base through the con-
cise and compact representation of information.

3. Frames permit the representation of inheritance relationships among ob-
jects.

Using the earlier gear example, a frame representation might be constructed
as shown in Figure 4.6. The knowledge base analyzes the problem of buying
or leasing an asset. Once a buy or lease conclusion has been reached, the
knowledge base determines the best financing method for the acquisition of
the asset. The consultation process involves three goal parameters ordered as
follows:

How-to-Acquire — Payment — Finance-It

How-To-Acquire represents the buy or lease decision option, Payment rep-
resents the installment payment needed to acquire the asset, and Finance-It



4.7 KNOWLEDGE-REPRESENTATION MODELS 73

TABLE 4.1. Root Frame and Subframe Organization

Root Frame Subframe
Frame Name: ASSET Frame Name: FINANCE
PARMS: PARMS:

LESSEE-CASH
CASH-RESERVE-NEEDED
PRESERVES-CASH
CANNOT-BORROW
ACQUIRE-BY

RULES:

1. IF LESSEE-CREDIT = POOR
THEN CANNOT-BORROW
AND ACQUIRE = LEASE

2. IF CANNOT-BORROW OR PRE-
SERVES-CASH THEN HOW-TO-
ACQUIRE = LEASE AND
ACQUIRE-BY = LEASE

3. IF LESSEE-CREDIT = FAIR
AND LESSEE-CASH = FAIR
AND CASH-RESERVE-NEEDED
THEN PRESERVES-CASH

4. IF HOW-TO-ACQUIRE IS NOT
KNOWN THEN HOW-TO-AC-
QUIRE = BUY-THE-ASSET AND
ACQUIRE-BY = PURCHASE

GOALS:
HOW-TO-ACQUIRE, PAYMENT

FINANCE-INTEREST
FINANCE-PERIOD
DOWN-PAYMENT
ASSET-COST

RULES:
1. IF ACQUIRE-BY = PURCHASE
THEN FINANCE-IT (calculation)

2. IF ACQUIRE-BY = LEASE THEN
FINANCE-IT = (external calcula-
tion)

3. IF FINANCE-IT IS KNOWN
THEN PAYMENT =
(external calculation)

GOAL:
FINANCE-IT

represents the finance method appropriate for the particular scenario of the
client. It seems logical to organize the knowledge base rules into frames
according to their relationships with the goal parameters. As shown in Table
4.1, rules relevant to How-to-Acquire and Payment are located in the root
frame while rules relevant to Finance-It are in the subframe. When dealing
with large knowledge bases, it is helpful to have an analytical tool for inves-
tigating the relationships and logical groupings of the knowledge elements.
Frames facilitate such an efficient organization.

4.7.3 Scripts

Script is a knowledge-representation technique suggested by Schank [90].
Scripts are a special form of frames. A script describes a stereotyped sequence
of events in a particular context. It presents the expected sequence of events
and their associated information in a linked time-based series of frames. For
example, the frame discussed previously for gear production may be linked
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to other frames which contain detailed information on the cutting operation
in the time sequence of events in the production schedule. Details of script
representation are presented by Schank and Abelson [89], Minsky [67], Kui-
pers [58], and Hayes [38]. The components of a script include the following:

1. Entry conditions: Conditions for entering the script.

2. Results: Outcomes that are expected after the events described in the
script have occurred.

3. Props: Slots representing objects in the script. Recall that a script is a
collection of frames where each frame is associated with a certain ob-
ject.

4. Roles: Slots representing entities (e.g., people) that perform the actions
specified in the script.

5. Track: Specific case of a general pattern that is represented by a specific
script. For example, at a professional conference, several tracks of tech-
nical presentations are conducted simultaneously under the general
theme of the conference.

6. Scenes: Actual sequences of events that occur. Typical scenes at a pro-
fessional conference might be registration, selection of sessions to at-
tend, attendance at the sessions, and adjournment.

4.7.4 Rules

Rules are the most popular and versatile of all the representation schemes.
Rules provide a formal way of representing recommendations, directives, or
strategies. If—then rules link antecedents to their associated consequents.
Rules are appropriate for a variety of expert systems problem domains. The
if—then structure of rules links pairs of objects or attributes as shown below:

If premise, then conclusion

If input, then output

If condition, then action

If antecedent, then consequent
If action, then outcome

If data, then goal

Premise refers to the fact that must be true before a certain conclusion can
be drawn. Input refers to the data that must be available before a certain
output can be obtained. Condition refers to circumstances that must prevail
before a certain action can be taken. Antecedent refers to the situation that
must occur before a certain consequence can be observed. Action refers to
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the activities that must be undertaken before a certain outcome can be ex-
pected. Note that the action that is an antecedent in this particular case was
generated as a consequent from a condition/action pair. Data refers to the
information that must be available before a certain goal can be realized. In
subsequent discussions, the terms premise, condition, and antecedent are used
interchangeably.

The antecedent typically contains several clauses linked by the logical con-
nectives AND and OR. The consequent consists of one or more phrases that
specify the action to be taken. Advantages of rules are:

1. They are flexible in that individual rules can be easily added, removed,
or updated.

2. They provide a straightforward representation of knowledge that is easy
to interpret.

3. They are structured in a way similar to the way people rationalize to
solve problems.

4. They are useful for representing the interaction between declarative and
procedural knowledge.

The major disadvantage of rules is the requirement for a very efficient
search mechanism for finding appropriate rules during an expert system con-
sultation. An example of a rule that might be used in the gear-production
example is:

Antecedent: If thickness for any tooth is large and circular pitch is small
and face width is medium

Consequent: Then production method is cutting

Rules can be classified into two categories: First-order rules and meta rules
(higher-order). A First-order rule is a simple rule consisting of antecedents
and consequents. A meta rule is a rule whose antecedents and consequents
contain information about other rules. Examples are:

First-order rule:
If node j is inactive and arc i has a reliability < 0.9
Then set (1, n) connectedness = 0
Meta rule:
If arc k has a failure rate similar to arc m
And arc k uses rule R1
Then activate rule R1

A familiar example of a meta rule is the popular office sign that reads:
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Rule Number One:
The boss is always right.
Rule Number Two:
If the boss is wrong
Then refer to Rule Number One

Rules are versatile and widely applicable for representing knowledge in a
variety of problem domains. However, there are certain unique problem do-
mains where rules may not be readily applicable. Pattern recognition or ma-
chine vision are two problem domains where rules might be difficult to apply.
Machine vision problems lend themselves to solutions using frames and
scripts or other related techniques. Rules might be used during a postpro-
cessing part after enough features have been extracted from a particular vision
scenario.

4.7.5 Predicate Logic

Propositional calculus is an elementary system of formal logic that is used to
determine whether a given proposition is true or false. Predicate calculus adds
the capability of specifying relationships and making generalizations about
propositions. Logical expressions use predicate calculus to generate inferences
by asserting the truthfulness or otherwise of propositional statements. Adding
functions and other analytical features to predicate calculus creates first-order
predicate calculus. A function is a logical construct that yields a value. For
example, when a function defined as ‘“‘is-made-by”’ is applied to the object
gear, the result might be “machining.” That is,

(Is-Made-By (Gear Machining))

The statement “Gear is-a machined part” is either true or not-true in the
context of the problem being addressed. Many forms of logic have been
developed for use within Al, including propositional calculus, predicate cal-
culus, first-order logic, modal logic, temporal logic, and fuzzy logic. First-
order logic, an extension of predicate logic, is perhaps the most commonly
used. A predicate symbol expresses a statement about individual elements,
either singly or in relation to other elements. A function symbol expresses a
mapping from one element or a group of elements to another element. For
example, in the formula below, the predicate (noun) Product denotes a rela-
tionship between three arguments: a particular class of item, material, and
shape.

Product (Shaft, Metal, Cylindrical)

The predicate will return a value of “true” if a given item matches the
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description of a cylindrical metal shaft. Similarly, the function symbol “Use”
in the formula below maps metal shafts to a particular usage category.

Product (Shaft, Metal, Use (Crankshaft))

If “crankshaft” is used as the argument in the function ‘“‘use,” the function
will most probably return the value “cylindrical” since most crankshafts are
cylindrical in shape. The value ‘“‘cylindrical” is then used by the predicate
“Product” to identify a specific type of product. Subsets of product types can
be formed, for example, by further classifying cylindrical metal shafts into
diameter size categories. Thus, product inheritance relationships can be rep-
resented by considering the predicate ‘“‘part-of’’ as shown in the formula be-
low:

{Part-of (x, y)} N {Part-of (y, z)} = part-of (x, z)

Predicate logic relies on the truth and rules of inferences to represent
symbols and their relationships to each other. It can be used to determine the
truthfulness or falsity of a statement and can also be used to represent state-
ments about specific objects or individuals. The advantages of predicate logic
include:

1. Simplicity of notation allows descriptions to be readily understandable,

2. Modularity allows statements to be added, deleted, or modified without
affecting other statements in the knowledge base

3. It is concise because each fact has to be represented only once.

4. Theorem-proving techniques can be used to derive new facts from old
ones

Predicate logic is best used in domains of concise and unified theories such
as physics, chemistry, and other mathematical or theoretical fields. The dis-
advantages of predicate logic are:

1. Difficulty in representing procedural and heuristic knowledge

2. Difficulty in managing large knowledge bases due to restricted organi-
zational structure

3. Limited data-manipulation procedures

4.7.6 O-A-V Triplets

An O-A-V triplet is a common type of semantic network commonly used
within the framework of other representation models. It is divided into three
parts, object, attribute, and value. The representation presents a serial list of
an object and an attribute of interest. Objects are viewed as physical or con-
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ceptual entities. Attributes are general properties defining the object, while
the values indicate the specific descriptions of the attribute. Using a segment
of the semantic network presented earlier in Figure 4.5, an example of O-A-
V triplet for the gear production problem is:

Object Attribute Value
Gear Number of teeth 20

O-A-V representation is used within the framework of other representation
techniques. For example, in semantic network, each object may have an at-
tribute of interest identified and the associated value of the attribute may be
used in determining further links within the network structure.

4.7.7 Hybrids

Each knowledge-representation technique has its advantages and disadvan-
tages. For example, rules are especially useful for representing procedural
knowledge (methods for accomplishing goals). Semantic networks are good
for representing relations among objects. Frame-based semantic networks can
concisely store a large amount of knowledge about object properties and
relations. Predicate logic provides a means for explicitly expressing different
types of knowledge. Early expert systems tended to use one technique or
another exclusively. More recently the tendency has been to combine different
representation techniques, so as to take advantage of the capabilities of each
technique within the context of the prevailing problem. A system might use
rules to define procedures for discovering attributes of objects, semantic net-
works to define the relationships among the objects referenced in the rules,
and frames to describe the objects’ typical attributes. The frame example
presented earlier in Table 4.1 is a good example of combining rule and frame
representations.

4.7.8 Specialized Representation Techniques

Specialized representation techniques are sometimes needed to address the
unique characteristics of certain problem domains. The specialized approaches
may be needed to take advantage of specific search strategies. For example,
Badiru presents a Cantor set representational technique. described below [4].
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Cantor Set Model for Knowledge Representation. The Cantor set is often
referred to as the set of the excluded middle thirds [88]. A unique property
of the Cantor set is that it contains an infinite number of elements, but its
representative points occupy no space, in the geometric sense, on the real
number line. The concept of excluded middle thirds may have relevance in
certain problem domains requiring specialized search strategies. These are
domains where associative property inheritance relationships exist among the
elements of the knowledge base such that the elements can be stored in an
ordered fashion using a key property. Examples of such domains are:

1. Computer-aided design (CAD): Knowledge bases where design ele-
ments are stored by some design characteristic. For example, drive shaft
designs that are stored in order of shaft diameters and bending stresses.

2. Group technology: Group technology and process planning applications
where items are grouped into product families in a predetermined se-
quence.

3. Chemical analysis: Knowledge bases where materials are stored in order
of some key property, say atomic weight or electrical conductivity. Ex-
perimental searches for materials properties are a suitable application
for cantor set search approach.

Mathematically, the Cantor set is denoted as:

C={x€Q|xE U Sk}

k=0

where () = [0, 1]. The interval, §,, is as explained below.

Consider the closed interval () = [0, 1] and the open intervals
generated by successive removal of the middle thirds of intervals left after
previous removals. The interval deletions are shown geometrically in Figure
4.7. Note that:

0

U s, = [0, 1]

k=0

The interval §, is the union of the open intervals deleted from () after the
kth search iteration. The deleted intervals are represented mathematically be-
low:
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Figure 4.7. Cantor set representation.

8, = ¢ (null set)

If Q is considered as the universal set, then we may also express the Cantor
set as the complement of the original set C. That is, alternately,

C= <LJ 8k>
k=0
which, by DeMorgan’s law, implies
C = N ()
k=0

If we use the following simplifying notation for the complement,
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(&) = A

we would obtain the following alternate representation:

where

>
(=]

Il
J—
=
p—
—

It should be noted that A, is the remaining search space available for the
kth search iteration. Also note that A, consists of 2* closed and nonoverlapping
intervals each of real length (1/3%).

Application of the Cantor Set Approach. Knowledge bases for expert sys-
tems consist of pieces of information on the basis of which inferences are
drawn for a particular problem situation. For large domain problems, the
knowledge base lookup or search can easily lead to a combinatorial explosion
of possibilities. For example, if we have 50 pieces of evidence, each of which
is either true or false, then there are 2°° possible combinations. From a prac-
tical point of view, we need search procedures that can considerably reduce
the dimensionality of the search space.

In a manufacturing context, two physical objects are exactly alike only if
they are fully interchangeable. In an actual manufacturing situation, items in
a group will not necessarily have characteristics that are fully identical. Re-
calling the earlier example of shafts, a group of objects may consist of items
that are related by their classification as ‘““shafts.”” Differences within the group
may pertain to the items’ diameters or any other characteristic of interest. For
example, we may be interested in diameters that range from 3 in. to 7 in.
Arranging shaft designs in increasing or decreasing order of shaft diameter
can be used to indicate the degree of relationship or the level of property
inheritance of the items in the group. Thus, in a knowledge base, inferences
can be drawn to relate to certain subsets of a given set of the knowledge
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4.333 inches 5.666 inches

3.0 inches | | 7.0 inches
-—————— diameter —

Figure 4.8. Range of shaft diameters as a search space.

elements. Graphically, the shaft example may be represented as shown in
Figure 4.8.

Suppose we are interested in a shaft that meets a certain quality charac-
teristic. We can conduct an exhaustive search to check if each shaft meets
the desired quality characteristic. But exhaustive searches are very costly and
time consuming, particularly where we have a large number of items to
search. An efficient search strategy would be helpful in reducing the time and
expense of finding the item that meets the specified characteristic. Suppose
we know the distribution of the shaft diameters over the range of 3 in. to 7
in. If the distribution can be reasonably expected to follow a bell-shaped curve
such as the normal distribution shown in Figure 4.9, then the Cantor set
strategy may be employed. The search strategy would proceed as follows:

Step 1. Identify a known property of the items to be searched (e.g., di-
ameter sizes).

Step 2. Determine the range of values of the known property. This estab-
lishes the search space.

Step 3. Specify the desired characteristic of the item to be searched (e.g.,
quality characteristic).

3.00 7.00

Diameter Sizes (inches)

Figure 4.9. Bell-shaped curve model for Cantor search strategy.
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Figure 4.10. Search space for the second iteration of Cantor search.

Step 4. Determine the distribution of the items based on the known prop-
erty (e.g., bell-shaped).

Step 5. Sort the items in increasing or decreasing order of the known
property.

Step 6. Apply the Cantor set search procedure iteratively until an item
matching the specified characteristic is found.

Instead of conducting an exhaustive search over the entire search interval,
we would check the middle third first. If the item that meets the requirement
is not found in that interval, we would delete the interval from further con-
sideration. The middle thirds of the remaining intervals are then searched in
successive iterations.

Comments on the Search Procedure

1. If the distribution of the items is bell-shaped, then searching the first
middle third before any other interval is logical since that is where the
majority of the items are located.

2. The largest search effort will involve the first middle third. The search
process becomes less efficient as more iterations are needed to find the
desired item.

3. In the second and subsequent iterations, a decision must be made con-
cerning which middle third interval to search next. For example, Figure
4.10 shows the search space left after deleting the first middle third. We
have the option of first searching the middle third of interval A and
then the middle third of interval B and vice versa. Since the intervals
are equally likely to contain the desired item, one can flip a coin to
determine which interval to search first. The decision becomes more
difficult in the third iteration since, as shown in Figure 4.11, the re-
maining four intervals are not equiprobable. Figure 4.12 shows the
search intervals for the first three iterations of the Cantor search strategy.

In the Cantor search procedure, the desired item is found only when it is
located in the middle third of some interval. If the value of interest is in the
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Figure 4.11. Search space for the third iteration of Cantor search.

interval (4.333, 5.666), then only one interval search will be needed to find
it. If it is in the interval (3.444, 3.888) U (6.110, 6.554), then at most three
interval searches will be needed. If the value is in the interval (3.148, 3.296)
U (4.036, 4.184) U (5.814, 5.962) U (6.702, 6.85), then at most seven interval
searches will be needed. In general, the maximum number of interval
searches, N, needed to locate an item in a Cantor set search strategy is one
of the following:

N, =1,3,5,7,15,31, ...
where k is the iteration number. That is,

Ny =0
N, =N, +2¢!

k—1
=> 2

j=0
=@y -1

It should be noted that if the distribution of the items to be searched is
skewed to the right or left (e.g., chi-squared or lognormal distributions), as
shown in Figure 4.13, then the basic Cantor set search strategy will not be
appropriate.

Modified Search Procedure. The deficiency mentioned in the third comment
on the Cantor search procedure can be overcome by using the following
modification of the procedure. The modification improves the efficiency of
the search strategy.

Consider the search intervals to be used for the second iteration (shown
earlier in Figure 4.10). Instead of considering the intervals [3.00, 4.333] and
[5.666, 7.00] as separate search intervals, we can merge the intervals as shown
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Figure 4.12. Successive search iterations.

in Figure 4.14. Then the next middle third to be searched during the second
iteration will be [3.89, 6.11]. Recall that the items in the interval [4.333,
5.666] have already been deleted in the first iteration and are not contained
within the modified middle third interval of [3.89, 6.11]. This process is
repeated consecutively until the desired item is found. Figure 4.15 shows the
search interval for the third iteration using the merged interval modification.

Alternate Search Preference. The conventional Cantor set search strategy
gives first preference to the middle third of the ordered set of items to be
searched. As mentioned previously, this is suitable if the distribution of the
property of interest is bell-shaped. If, by contrast, the distribution is bimodal

Positively Skewed
Negatively Skewed

Figure 4.13. Skewed distributions not suitable for Cantor search.
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Middle Third

<

Il
3.00 7.00
3.89 6.11

4.333 5.666

Figure 4.14. Merged search intervals for the second iteration.

end-heavy, then an alternate ordering of the items may be required. An ex-
ample of a bimodal end-heavy distribution is shown in Figure 4.16, which is
representative of typical hazard functions in product reliability analysis. The
bathtub-shaped distribution is a special form of the beta distribution with
shape parameters of @ = 0.001 and 8 = 0.001.

It is noted that most of the items to be searched are located in the regions
close to the minimum and maximum points. An alternate arrangement of the
items is achieved by bisecting the ordered set through the median and flipping
over the half-sets generated. This is shown graphically in Figure 4.17. This
alternate arrangement gives first preference to the end points of the original
set of the items to be searched.

Middle Third

T I ~——
| II |

3.00 3.594 6.406 7.00

3.888 6.110

Figure 4.15. Merged search intervals for the third iteration.
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f(x)

Min M ax
Figure 4.16. Bathtub-shaped distribution.

4.8 CONCEPT OF KNOWLEDGE SETS

Experts differ in personal cognitive reasoning skills and will follow different
patterns of reasoning. The peculiar features of a problem domain are impor-
tant in determining how the knowledge acquired in the domain should be
represented. The organization of medical knowledge, for example, would have
certain unique characteristics and requirements compared to the representation
of financial management knowledge. Medical information concerning specific
patient data may be more dynamic than the information in other problem
domains. These differences must be taken into account in organizing knowl-
edge into an efficient form for problem solving.

First
Middle Third

_/'/ \_—_

5° 3.667 6.333 o 5T
(Left of Median) (Right of Median)

3.00 7.00
(Min) (Max)

Figure 4.17. Bisected and flipped search interval.
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Figure 4.18. Equivalent knowledge bases.

4.8.1 Properties of Knowledge Sets

Badiru presents a collection of concepts based on set theory for organizing
elements in expert systems knowledge bases [5]. A knowledge set may be
defined as a collection of heuristics or facts that constitute a problem-solving
technique. Specific distinguishable contents of the knowledge set are the
knowledge elements. When the knowledge set is applied to a specific problem
domain, then we have what is referred to as a knowledge base. Presented
below are some set properties defined in the context of knowledge base or-
ganization.

Equivalent Knowledge Bases. Two knowledge bases A and B are equivalent
if and only if they both yield the same consultation result for the same prob-
lem scenario. That is:

A=B
As shown in Figure 4.18, the two knowledge bases, KB1 and KB2, are
equivalent if they both yield the same conclusion, X, for the same given set
of data. An evaluation of the equivalence of knowledge bases may be useful
in a comparative analysis of competing products that are designed to solve

the same problem with comparable performance.

Equality of Knowledge Bases. Knowledge bases A and B are equal if and
only if they contain identical knowledge elements. That is:

A=B>3VxeEA, XEB
and
B=A>Vx€EBRB, XxXEA

Figure 4.19 shows the equality of two knowledge base sets. If A is equal
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KB1 KB2

Figure 4.19. Equality of knowledge bases.

to B, then an element x belonging to A implies that B also contains x. Knowl-
edge bases that are equal are not necessarily equivalent, since different or-
ganizations of the knowledge elements can lead to different reasoning paths
and thus yield different results.

Subjugation of Knowledge Sets. Let A and B be knowledge bases. If every
rule element of A is a rule element of B, then A is a subset of B and B is a
superset of A as presented mathematically below and graphically in Figure
4.20.
ACB>3VxeEA—-XERB
A true subset of a knowledge base should solve a subproblem of the main

problem that the knowledge base is designed to solve. In terms of expert
systems consultation, a subset of a knowledge base is that portion of the

KB

Main Goal
Subgoal

Figure 4.20. Formation of a subset of a knowledge base.
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Goal

A

Subgoal

Subgoal

Subframes /

Figure 4.21. Partition of problem into subframes.

knowledge that would yield a subgoal of the main goal. This concept is useful
for problem partition purposes. The partitions (or subsets) of a given knowl-
edge base may be used to construct subframes associated with specific sub-
goals, as shown in Figure 4.21. The union of the root frame and subframes
make up the entire knowledge base.

Ordered Pairs of Knowledge Elements. Given any two objects a and b, we
may form a new object (a, b), called the *“‘ordered pair (a, b),” with the
property that:

(a, b) # (b, a)

Two ordered pairs (a, b) and (c, d) are equal if and only if @ = ¢ and b
= d. The concept of ordered pairs is useful in the symbolic representation
technique of artificial intelligence. For example, the words “Down’” and
“Town” can form two distinct ordered pairs, “Down Town” and “Town
Down.” The first pair represents a central location of a geographic area, while
the second may be viewed as describing the “Down’ or depressed condition
of the geographic region. Obviously,

Down-Town # Town-Down

To elaborate further the concept of ordered knowledge elements in sym-
bolic representation, we may consider the words “bills” and ‘““foot.”” They
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may be ordered symbolically to yield ordered pairs with two distinct inter-
pretations:

1. (Bills-Foot) referring to a part of the body of a person named Bill

2. (Foot-Bills) referring to an action state (i.e., to incur consequential ex-
penses)

Similarly, the TV commercial that says ‘“no salt is sodium-free’” may be
used to illustrate an ordered pair. For example, ““(No-Salt) is sodium-free”
implies that the product named ‘‘no-salt” contains no sodium. By comparison,
“No-(Salt) is sodium-free” implies that there is no salt that is sodium-free
(i.e., all salts contain sodium). In an analogous manner, the phrase ‘“No news
is good news” indicates that there is no news that is good news, whereas the
phrase “No-news is good news’ declares the object ‘“‘no-news” as being
“good news.”

Cartesian Products of Knowledge Sets. Let A and B be two knowledge sets.

The set of all ordered pairs (a, b), where a and b are specific parameters of

objects, with a belonging to A and b belonging to B, is the Cartesian product

of A and B, denoted by AXB.
AXB = {(a, b) |a € A, b € B}
For example:
Let A = {Hammer, Foot, Kick}
and
B = {Head, Bill, Bucket}

Then:

AXB = {(Hammer, Head), (Hammer, Bill), (Hammer, Bucket), (Foot, Head),
(Foot, Bill), (Foot, Bucket), (Kick, Head), (Kick, Bill), (Kick,
Bucket)}

Some of the elements of AXB may be combined to obtain symbolic rep-
resentations that convey different inferences. For example, as discussed in
Chapter 2,

(Hammer-Head)-(Kick-Bucket)

could be the symbolic representation for the statement: “If the victim’s head
is hammered, then the victim may kick the bucket.” Likewise,
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(Kick-Head)-(Foot-Bill)

could symbolically represent the statement “If victim’s head is kicked, the
assailant will foot the bill incurred as a result of the injury.” We note that the
words ‘“head” and ‘“‘kick” are common to the two representations above.
However, the way they are ordered in combination with two other words
creates two different meanings.

Knowledge Set Relations. Given knowledge sets A and B, not necessarily
distinct, a relation R from A to B is a subset of the Cartesian product AXB.
Thus, an element a of A is related to another element b of B by the relation
R. This relation is written as:

aRb to indicate that (a, b)) € R

The symbol aRb is read as ““a is R-related to b.”” Several distinct relations
can be defined within a given knowledge base. For example, relations may
be of “equality,” “‘opposite,” “synonym,” and so on. If the sets A and B are
the same set, say K, then R is defined as a relation in K instead of a relation
from K to K. In a community of people denoted by C, the symbol
“(Paul)H(Joan)”” may define a relation H (of being the husband of . . .) and
imply that Paul is the husband of Joan. Thus, we are considering an ordered
pair (Paul, Joan) in the relation H. The order can be reversed to define a
different relation. For example, (Joan)W(Paul) defines a relation W (of being
the wife of . . .) in C. As another illustration of relations, we can define a
relation, S, for synonyms with the example of:

LRI

(Large)S(Big)

The synonym relation can have useful applications in knowledge base
searches since it would permit consultations to proceed successfully on the
basis of the instantiation of synonym parameters rather than the specific par-
ameters requested. A relation R is said to be symmetric if and only if xRy
implies yRx—for example, a brother-to-brother relation. The relations H and
W discussed above are not symmetric. But the S relation is symmetric since
large is a synonym for big and big is a synonym for large. Here, “big” and
“large” represent specific values of an attribute of a given object. The relation
R is said to be transitive if and only if xRy and yRz imply that xRz—for
example, brother-to-brother-to-brother relations.

Inverse Relations. Each knowledge base relation, R, may have an inverse
that is defined as:

R™ = {(b, a) | (a, b) € R}

The inverse relation may be used to obtain parameter negation instead of
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explicitly reversing parameter values. In a knowledge base, particularly one
of those dealing with natural language applications, it may be necessary to
define a relation of synonym as well as an inverse relation of antonym. In
quantitative analysis, a relation of “‘greater-than’ and the relation of “less-
than” may be of interest. Using the earlier synonym relation as an example,
a parameter, P, can be instantiated by any synonym of the word “known’ as
shown below:

P = x € {a | aSknown}

So, any word “x” that is a synonym for “known” can be a suitable value
for the instantiation of P. Thus, we have

(KNOWN)synonym(x)
where x may be any element in the set of words given by:

A = {available, accessible, handy, ready, within-reach, identified,
recognized, specified, understood, asserted,
justified, stated, inferred, given,
observed, realized}

Instead of defining another parameter value of “unknown’ to achieve pa-
rameter negation for ‘“known,” a generic inverse relation can be used. This
is shown mathematically as:

P =x € {a|aS! known}

Thus, the inverse relation facilitates a compact representation of a large
body of knowledge. The major advantage of the inverse relation is that a
single relation can be applied generally across various parameters within a
given knowledge base.

Domain of Knowledge Set Relations. If R is a relation from set A to set B,
then the domain of R is the set of all parameter a belonging to A such that
aRb for some parameter b belonging to B. That is,

Dom(R) = {a € A | (a, b) € R for some b € B}

As an example, consider the two frames in Figure 4.22. Let frame A contain
the subgoals al, a2, a3, a4, a5 while frame B contains the subgoals b1, b2,
b3, b4, b5, b6, b7, b8. Define a relation Z from A to B such that an element
a belonging to A is related to an element b belonging to B if and only if there
is a rule in B that has a as a premise and b as a conclusion.

Now suppose only the following rules exist in frame B:
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Frame A Frame B
Rules
Subgoals a1:b2
al az:b5
a2 a3:b6
ad > Subgoals
a4 b1
as ~ b2
b3
b4
b5
Z = Relation of relevant rule N b6
Domain of Z = {al, a2, a3} b7
Image of Z = {b2,b5,06} b8

Figure 4.22. Relations defined on knowledge base sets.

If al, then 52
If a2, then b5
If 43, then b6

The domain of Z is then given by the set:
Dom(Z) = {al, a2, a3}

since the elements al, a2, and a3 are the only elements of A that can
successfully trigger rules in B. The image of the relation, R, is defined as:

Im(R) = {€ B | (a, b) € R for some a € A}
Thus, the image of the relation Z is:
Im(Z) = {b2, b5, b6}

which corresponds to the set of rules that are triggered in frame B. A special
kind of relation on knowledge sets is parameter mapping in which there is
one-to-one correspondence between parameters in knowledge subsets. An ex-
ample of parameter mapping is shown in Figure 4.23. An identification of the
specific correspondence between parameters in the subsets of a knowledge
can lead to a better control of the inference process. For example, in Figure
4.24, parameter j is known to be capable of producing only subgoal i.
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Frame 1 Frame 2
parameter 1 subgoal 1
subgoal 2

) One-to-One
subgoal i

Figure 4.23. Parameter mapping in knowledge base frames.
Identity Relations on Parameters. An identity relation in a knowledge base
is a relation that relates every knowledge element with itself such that:
R = {( a)|a € A)
This is referred to as the reflexive property of the relation R. For example, a
relation defined as DIVISION-BY-ONE will preserve the characteristics of
any given element to which it is applied. For example,

DIVISION-BY-ONE(argument) = argument

By contrast, a relation defined as SQUARE is not a reflexive relation, since

Entire Set of Rules Entire Problem Domain

Entire Set of Data

Figure 4.24. Intersection of domain, knowledge, and data sets.
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it does not preserve the characteristics of all the arguments to which it is
applied.

Binary Operations on Knowledge Sets. A binary operation on a knowledge
set S is a function from the Cartesian square SXS to S, that is, an operation
that uses an ordered pair from SXS to produce another element of S. For
example, let S be the set of groups of words in a knowledge base dictionary.
An operation may be defined for the process of forming natural language
statements (or new groups of words) in the set. The new groups of words
belong to the original set of words.

Mapping of Knowledge Sets. If the set C is a subset of the Cartesian product
AXB, of the knowledge sets A and B, then C is a mapping from A to B such
that for each a belonging to A there is exactly one b belonging to B for which
(a, b) belong to C. In order words, the mapping, C, is the collection of the
elements of AXB that have one-to-one correspondence with the elements of
A and B. The elements of the sets A, B, and C are specific parameters of
objects contained in the knowledge base of interest.

In the example presented earlier, C = AXB since each element a of A, in
combination with each element b of B, yields a unique (distinct) ordered pair
of words. In the experiment of tossing two fair dice and observing the sum
of the faces that show, only two of the 36 elements of the sample space can
form a mapping. The element “‘sum = 2"’ can be obtained in only one way,
(1 + 1), while the element “sum = 12”° can also be obtained in only one
way (6 + 6). The other number combinations produce sums that are not
unique. For example, 1 + 2 = 3 and 2 + 1 = 3. An understanding of the
mapping of parameters is quite useful in the organization of parameter data
for knowledge base construction. The knowledge engineer can analyze and
identify what combinations of parameters produce which instantiations. Thus,
redundancy can be identified and eliminated.

Intersection of Knowledge Sets. Successful parameter instantiation can occur
only in the intersection of the domain, knowledge, and data sets. This inter-
section is not the same as in the physical sense of conventional sets. It is a
conceptual intersection that relates to which data fit which problem situation
and the contents of the knowledge base. This is shown graphically in Figure
4.24. Set A is the set of all available parameters in the knowledge base rules,
set B is the set of problem domain parameters, and set C is the set of all
parameters in the available data.

It is obvious that not all available rules will match the problem domain
and the available data simultaneously. To reduce the processing time for
expert systems consultation, the minimum most applicable set of knowledge
base should be used. This minimum set can be identified by finding the con-
ceptual intersection of the three sets A, B, and C. There is a tendency to
measure the robustness of an expert system by the number of rules it contains.
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But a close and careful review may reveal that a large percentage of the rules
included in a knowledge base are irrelevant for the type or amount of data
available.

Integration of Set Concepts. As expert systems and artificial intelligence
products find their ways into various areas of applications, the need to make
those products more compact and efficient will become a major concern.
Many researchers are now beginning to address the problems associated with
the shortcomings of the present systems. An integration of the set concepts
presented in the preceding sections should be applicable to the solution of
the prevailing problems in knowledge base organization.

4.9 REASONING MODELS

Once problem-solving knowledge has been identified, the way it is encoded
for drawing inferences depends on the reasoning approach desired for the
chosen problem domain. The search strategy, inference process, and control
structure are all important for knowledge-representation purposes. The struc-
ture of the problems in some domains will dictate which reasoning approach
would be most applicable or effective. Reasoning is the process of drawing
inferences from known or assumed facts. An inference is the logical conclu-
sion or implication based on available information. Sometimes it is possible
to draw an inference based on intuition. In such a case, one reaches a con-
clusion without a conscious use of reasoning. Presented below are some im-
portant concepts and models for drawing inferences during expert systems
consultation.

Deductive reasoning is the process of reasoning from general information
about a class of objects or events to specific information about a given mem-
ber of the class.

In inductive reasoning, one draws a general conclusion based on specific
facts. For example, the specific information about individual members of a
class of objects or events may lead to a general conjecture about the whole
class.

Monotonic reasoning involves a unidirectional parameter instantiation. Pa-
rameter instantiation is to the assignment of a specific value to a parameter.
In monotonic reasoning, parameter instantiation is irrevocable regardless of
whatever new information may become available. For example, the statement,
“Once a thief, always a thief”” conveys the notion of monotonic reasoning.
The observer’s view of a thief never changes, regardless of any new infor-
mation that may indicate the rehabilitation of the thief.

In nonmonotonic reasoning, parameters can be reinstantiated if new infor-
mation warrants the assignment of a new value to the parameter.

Forward chaining, commonly known as forward reasonsing or data-driven
search, is the process of reasoning forward from a given set of data to some
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possibly remote goal state or conclusion. Forward chaining is generally of the
heuristic form:
If (data condition)
Then (conclusion)
If we can assume that people normally like those that they trust, then a for-
ward chaining rule to convey that assumption is:
If person x trusts person y
Then person x likes person y
The conclusion part of a rule may become the condition part of another rule.
Thus, we can extend the above example to the one below:
If person x likes person y
Then person x enjoys-the-company-of person y
In backward chaining, also called backward reasoning or goal-driven, the
reasoning process starts from a goal state and backtracks to the paths that
might have led to the goal. Backward chaining is generally of the form:

Goal state

If (data condition)
A backward chaining rule based on the previous example is:

person x likes person y
If person x trusts person y

This example asserts that liking someone requires a precondition of trust.
As discussed below, such an assertion may not be precise. If, for example,
only 80% of the population fell in the category of the rule assertion, then we
could assign some level of certainty or confidence to the rule. Then the rule
might be stated as:

person x likes person y
If person x trusts person y (certainty factor = 0.80)
Backward chaining is often implemented in expert systems in the coding

format of a forward chaining rule. In that case, the goal is specified in the
antecedent of the rule and the condition leading to the goal is specified in the
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Goal State

Figure 4.25. Breadth-first search.

conclusion part of the rule. For the example of interpersonal relationship,
the backward chaining rule can be written as:

If person x is-to-like person y

Then person x must-trust person y

The process of drawing inferences using an expert system knowledge base
involves searching for parameters and values that match certain conditions.
In breadth-first search, all the available premises at a decision node are eval-
uated before the deeper details of each premise are gone into. Figure 4.25
shows an example of a breadth-first search. All the branches at each decision
node are evaluated before the branch to follow for the next search is selected.
The breadth-first search generates all nodes in the search tree at level k before
investigating the nodes at level k + 1. The complexity of the search process
is thus a function of the number of nodes investigated.

Since the procedure exhaustively investigates the branches at each level
before proceeding to the next lower level, breadth-first search will always find
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Goal State

Figure 4.26. Depth-first search.

the search path of shortest length. Thus, if search path length is the basis for
evaluating the efficiency of the search, then breadth-first search is optimal.
However, it is time consuming and sometimes impractical, particularly if the
goal state is located deep in the search tree and there are many branches at
each node. If the search tree has X branches at each node and there are Y
levels in the tree, then there are X" alternate paths to be investigated. However,
not all searches will go to the same depth and not all nodes will have the
same number of branches. So it is necessary to develop some aggregate mea-
sure of branches and levels to determine the number of alternate paths to be
investigated.

Depth-first search involves the evaluation of all the ramifications of each
premise before going to the next one. This is shown in Figure 4.26. An
important aspect of depth-first search is that it only requires keeping track of
the current path, and consequently storage and memory requirements to per-
form a depth-first search are less than for a breadth-first search. For this
reason, depth-first search is often preferred to breadth-first search. An advan-
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tage of breadth-first search is that if a solution path exists and there are a
finite number of branches in the search tree, then there is a guarantee that the
solution will be found.

An example of the comparison of depth-first search to breadth-first search
may be drawn from the screening of job applicants. Under breadth-first
search, all the applicants are broadly reviewed before whom to invite for
interview is decided, whereas under depth-first search, the first applicant is
reviewed, interviewed, and evaluated before other applicants are considered.

Modus ponens is one of the most common inference strategies in knowl-
edge-based systems. This is a logical reasoning that states that when the
premise of a rule is known to be true, then it is valid to believe that the
conclusion is true. For example, modus ponens allows us to reach the con-
clusion about B as shown below:

Given rule: If A is true, then B is true
Known fact: A is true

Valid conclusion: B is true

Modus tollens is the converse of modus ponens. Modus tollens reasoning
states that if the premise of a rule must be true for the rule’s conclusion to
be true, then the falsity of the conclusion implies the falsity of the premise.
As an example, consider the rule below:

Given rule: If SAT-SCORE is-greater-than 1200, then ADMISSION = yes
Known fact: ADMISSION = no
Modus tollens conclusion: SAT-SCORE is-not-greater-than 1200

As can be seen in this example, modus tollens reasoning may not necessarily
hold in many practical problem scenarios. The fact that ADMISSION = no
does not necessarily imply that the applicant did not have an SAT score
greater than 1200. Admission might have been denied for other reasons be-
sides SAT score. When it can be shown to be applicable, however, modus
tollens reasoning can be a powerful inference strategy.

Blackboard architecture is a special type of knowledge-based system, that
uses a form of opportunistic reasoning whereby several knowledge sources
contribute to the reasoning strategy [25, 34, 76]. The basic characteristics of
blackboard architecture are:

1. There are multiple sources of knowledge willing to contribute to the
problem solving process. Each knowledge source is considered to be an
expert in some limited aspect of the problem to be solved. That is, each
knowledge source can solve a subset of the overall problem.
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Figure 4.27. Blackboard architecture.

The knowledge sources may contain knowledge in the form of proce-
dures, rules, or other knowledge-representation schema.

The knowledge sources work collectively to achieve synergism needed
to solve the overall problem.

A globally accessible data base structure, the blackboard, is available.
The blackboard contains information about the current state of the prob-
lem being solved. Each knowledge source checks the blackboard to find
out what information is required for the next stage of the solution and
determines how it may contribute to that next solution step. The knowl-
edge sources make changes to the blackboard data incrementally until
the desired solution is reached.

The knowledge sources cannot communicate with each other directly.
Communication and interactions between the knowledge sources are
accomplished solely through the blackboard.

. Control information for the blackboard architecture may be contained

within the knowledge sources, on the blackboard itself, or in a separate
data base module. The controller monitors the changes to the blackboard
and determines the next immediate requirement in the solution process.
Figure 4.27 presents the components of the blackboard architecture.
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PROBABILISTIC AND FUZZY
REASONING

This chapter presents common techniques for handling uncertainty in
expert systems. Expert systems consultations for practical problems often re-
quire that some simplifying assumptions be made. The assumptions may in-
volve the elimination of certain parameters, the truncation of certain data sets,
or the inclusion of facts that have little bearing on the problem domain. Un-
fortunately, these simplifying assumptions, coupled with other natural limi-
tations in the inference process, create uncertainties that complicate our
reasoning processes.

5.1 HUMAN REASONING AND PROBABILITY

How human reasoning differs from machine reasoning has been a subject of
intense research for many years. Humans possess definite advantages over
computers when it comes to structural reasoning. Humans have intuitive in-
sight, which has thus far been difficult to implement in computer-based sys-
tems. Uncertainty is a reality in human reasoning and decision making. In
many practical situations, it is difficult to have problem conditions that involve
certain, complete, and consistent facts. Uncertainty can arise from several
sources. For example, the information available may be incomplete, the in-
formation may be very volatile, the facts of the decision problem may be
unstable, important data may be missing, the problem scenario may be too
dynamic, key facts may be imprecise, the problem statement may be too
vague, and so on. All of these situations compound the decision-making en-
vironment.

Several techniques have been developed to handle uncertainty in decision
making. Many of these techniques are now being incorporated into expert
systems. Probability analysis appears to be the most natural way to handle
uncertainty in expert systems. However, it has certain limitations that make
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it difficult to implement. Simplified techniques that do not resort to rigorous
theoretical basis have been developed as alternatives to probability in handling
uncertainty in expert systems.

5.2 BAYESIAN APPROACH TO HANDLING UNCERTAINTY

By using probability, we can generalize observations about events to arrive
at statements about a population of objects or conversely from the population
to specific events. The Bayesian approach uses Bayes’ theorem for handling
uncertainty in the process of drawing inference about objects or events. Bayes’
theorem states that:

Let:
{By, B,, . . ., B,} be a set of events forming a partition of the sample space
S, where P(B)) # 0, fori =1,2,...,n.
Let:
A be any event of S such that P(A) # 0. Then, for k = 1, 2, . .., n, we have
PB, NA
P(B,/A) = n(ki)
> P(B, N A)
i=1
_ _PBYPAIBY)

; P(B)P(A[B)

Referring to Figure 5.1, the shaded area is the event A that we are given
and the events labeled B, are the events about which inferences are to be
drawn. Bayes’ theorem allows us to calculate the probability of having an
event B; given that the event A has occurred. Bayes’ theorem can be restated
in terms of objects and parameters in a knowledge base, as discussed earlier
under the concepts of knowledge sets.

For example, if it is known that 2% of a population have tuberculosis
(T), then we can define the following [60];

Fact: P(T) = 0.02
If P(X|T) = probability that an X-ray of a tubercular person is positive
and P(X|Not-T) = probability that an X-ray of a healthy person is positive
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Figure 5.1. Events in a sample space.

Then P(T]X) = probability that a person with a positive X-ray has tubercu-
losis

Data: P(X|T) = 0.90
P(X|Not-T) = 0.01

Using Bayes’ rule, we can calculate P(71X) as follows:
P(D)P(X|T)

P(T)P(X|T) + P(Not-T)P(X|Not-T)

B (0.02)(0.90)
~(0.02) (0.90) + (0.98) (0.01)

= 0.648

P(TIX) =

While the techniques for applying the probability approach are well de-
veloped, there are many reasons why conventional probabilistic analysis has
not been very popular in expert systems, including:

1. The events that partition the sample space (knowledge base) must be
disjoint. This, of course, is not necessarily the case in the reasoning
approach that humans use in solving practical problems.

2. The prior probabilities, P(A|B;), must be known. Since most heuristic
problem-solving methods rely on expert judgment rather than mathe-
matical facts, these prior probabilities are usually not available. Even
when they are available, they are often unreliable.

3. Bayesian reasoning could lead to combinatorial explosion of the anal-
ysis. Since the boundaries of the events leading to a problem solution
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are usually indeterminate or ambiguous, there is a tendency to overpar-
tition the sample space. This subsequently leads to large data require-
ments and analysis.

4. Users not familiar with probabilistic statements are likely to misinterpret
the results of a probability analysis.

5. New users are likely to find probability analysis intimidating.

The statistical approach to reasoning can be optimal from a theoretical
perspective. However, practicality often precludes their implementation in
expert systems. The probability approach has been used only in a few expert
systems. In many cases, simplifying assumptions are often made in an attempt
to achieve practicality. Unfortunately, such assumptions reduce or nullify the
power of the probability approach. Presented below are some important re-
lations defined for parameters and assertions in handling uncertainty in expert
systems.

5.2.1 Logical Relations

With logical relations (like predicate calculus), the truthfulness of hypothesis
is completely determined by the truthfulness of the assertions defining it. The
relations include primitive logical operations conjunction (AND), disjunction
(OR), and negation (NOT). The logical AND is the minimum of the proba-
bility values of the component assertions, and the logical OR is the maximum
of the probability values of the component assertions.

5.2.2 Plausible Relations

Each assertion contributes “‘votes” for or against the truthfulness of an hy-
pothesis. Each rule has a rule strength associated with it that defines the
degree to which a change in the probability of the evidence changes the
probability of the hypothesis. The change can be positive or negative, to favor
or disfavor the hypothesis.

5.2.3 Contextual Relations

This relation expresses a condition that must be established before an asser-
tion can be brought into the reasoning process. This is an example of the
goal-driven approach of backward chaining.

5.3 DECISION TABLES AND TREES

Decision tree analysis is used to evaluate sequential decision problems. In
engineering analysis, a decision tree may be useful in evaluating sequential
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TABLE 5.1. Decision Table for Task Selection

Actions

Task 1 Task 2 Task 3

Event Long Medium Short Long Medium Short Long Medium Short

Rain 1 1 U 1 U D 1 1 U
No Rain 1 D D U D D U U U

I = Increased duration; D = Decreased duration; U = Unchanged duration

project events. A decision problem under certainty has two elements: action
and consequence. The decision maker’s choices are the actions, while the
results of those actions are the consequences. For example, in an activity
network planning, the choice of one task among three potential tasks in a
given time slot represents a potential action. The consequences of choosing
one task over another may be characterized in terms of the slack time created
in the network, the cost of performing the selected task, the resulting effect
on the project completion time, or the degree to which a specified perform-
ance criterion is satisfied.

If the decision is made under uncertainty, as in stochastic network analysis,
a third element, an event, is introduced into the decision problem. If we extend
the deterministic task selection process to a stochastic process, the actions
may be defined as Select Task 1, Select Task 2, and Select Task 3. The
durations associated with the three possible actions can be categorized as
Long task duration, medium task duration, and short task duration. The actual
duration of each task is uncertain. Thus, each task has some probability of
exhibiting long, medium, or short durations. The events can be identified as
weather incidents: rain or no rain. The incidents of rain or no rain are un-
certain. The consequences may be defined as Increased project completion
time, Decreased project completion time, and Uunchanged project completion
time. However, these consequences are uncertain due to the probabilistic du-
rations of the tasks and the variable choices of the decision maker. That is,
the consequences are determined partly by choice and partly by chance. The
consequence is dependent on which event, rain or no rain, occurs.

To simplify the decision analysis, the decision elements may be summa-
rized by using a decision table. A decision table indicates the relationship
between pairs of decision elements. The decision table for the preceding ex-
ample is presented in Table 5.1. In the table, each row corresponds to an
event and each column corresponds to an action. The consequences appear
as entries in the body of the table. The consequences have been coded as I
(Increased), D (Decreased), or U (Unchanged). Each event-action combina-
tion has a specific consequence associated with it. In some decision problems,
the consequences may not be unique. Thus, a consequence that is associated
with a particular event-action pair may also be associated with another event-
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action pair. The actions included in the decision table are the only ones that
the decision maker wishes to consider. For example, subcontracting or task
elimination could be other possible choices for the decision maker. The ac-
tions included in the decision problem are mutually exclusive and collectively
exhaustive, so that exactly one will be selected. The events are also mutually
exclusive and collectively exhaustive.

The decision problem can also be conveniently represented as a decision
tree, as shown in Figure 5.2. The tree representation is particularly convenient
for decision problems with choices that must be made at different times over
an extended period. For example, resource-allocation decisions must be made
several times during the life cycle of an engineering project. The choice of
actions is shown as a fork with a separate branch for each action. The events
are also represented by branches in separate forks. To avoid confusion in very
elaborate decision trees, the nodes for action forks are represented by squares
while the nodes for event forks are represented by circles. The basic guideline
for constructing a tree diagram is that the flow of events should be chrono-
logical from left to right. The actions are shown on the initial fork because
the decision must be made before the actual event is known. The events are
thus shown as branches in the third-stage forks. The consequence resulting
from an event—action combination is shown as the end point of the corre-
sponding path from the root of the tree.

Figure 5.2 reveals that there are six paths leading to an increase in the
project duration, five paths leading to a decrease in project duration, and seven
paths leading to an unchanged project duration. The total number of paths is
given by:

P=1_[ni

i=

where

P = total number of paths in the decision tree
N = number of decision stages in the tree
n;, = number of branches emanating from each node in stage i

1

Thus, for the example in Figure 5.2, the number of paths is P = (3)(3)(2) =
18 paths. As mentioned previously, some of the paths, even though they are
distinct, lead to identical consequences. Probability values can be incorporated
into the decision structure as shown in Figure 5.3. Note that the selection of
a task at the decision node is based on choice rather than probability. In this
example, it is assumed that the probability of having a particular task duration
is independent of whether or not it rains. In some cases, the weather sensi-
tivity of a task may influence the duration of the task. Also, the probability
of rain or no rain is independent of any other element in the decision structure.
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ACTION OUTCOME EVENT CONSEQUENCE
Rain Increased duration
Long No Rain Increased duration
. Rain_ |ncreased duration
Medium
- Decreased duration
No Rain
Short Rain_ ynchanged duration
Task 1 - Decreased duration
No Rain
Rain_ |ncreased duration
Unchanged duration
Unchanged duration
Task 2 Medium
- Decreased duration
No Rain
Short Rain  pecreased duration
- Decreased duration
No Rain
Task 3 Rain_ |hcreased duration
Long No Raim Unchanged duration
Rain | dd .
Medium ncreased duration
No Rain Unchanged duration
Short Rain_ ynchanged duration
- Unchanged duration
No Rain
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Figure 5.2. Decision tree for task selection.

If the items in the probability tree are interdependent, then the appropriate
conditional probabilities will need to be computed. This will be the case if
the duration of a task is influenced by the events Rain’’ and No-rain. In such
a case, the probability tree should be redrawn as shown in Figure 5.4, which
indicates that the weather event will need to be observed first before the task
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ACTION OUTCOME EVENT CONSEQUENCE
Rain_ |hcreased duration (0.2275)
0.35
0.65 .
Long No Raim Increased duration (0.4225)
0.65 )
Rain_ Increased duration (0.1050)
Medium 0.35
1.0
0.30 0.65 )
- Decreased duration (0.1950)
No Rain
Short Rain_ Unchanged duration  (0.0175)
0.05 0.35
0.65 )
Task 1 - Decreased duration (0.0325)
No Rain
Rain_ |hcreased duration (0.1120)
Long No Ramm Unchanged duration (0.2080)
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No Rain
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0.30 0.35
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No Rain Unchanged duration (0.1950)

Figure 5.3. Decision tree with probability values.

duration event can be determined. For Figure 5.4, the conditional probability
of each type of duration, given that it rains or it does not rain, will need to
be calculated.

The respective probabilities of the three possible consequences are shown
in Figure 5.3. The probability at the end of each path is computed by mul-
tiplying the individual probabilities along the path. For example, the proba-
bility of having an increased project completion time along the first path (Task
1, Long duration, and Rain) is calculated as:
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P(Long Duration | Rain)

Rain P(Medium Duration | Rain)
0.35 P(Short Duration | Rain)
0.65 P(Long Duration | No Rain)
No Rain P(Medium Duration | No Rain)
P(Short Duration | No Rain)
Task 1
Task 2
No Rain
Task 3
Rain
0.35 .
0.65
No Rain

Figure 5.4. Decision tree with conditional probability.

(0.65)(0.35) = 0.2275

Similarly, the probability for the second path (Task 1, Long duration, and No-
rain) is calculated as:

(0.65)(0.65) = 0.4225

The sum of the probabilities at the end of the paths associated with each
action (choice) is equal to one, as expected. Table 5.2 presents a summary of
the respective probabilities of the three consequences based on the selection
of each task. For example, the probability of having an increased project
duration when Task 1 is selected is calculated as:
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Probability = 0.2275 + 0.4225 + 0.105 = 0.755

Likewise, the probability of having an increased project duration when Task
3 is selected is calculated as:

Probability = 0.035 + 0.21 = 0.245

If the selection of tasks at the first node is probabilistic in nature, then the
respective probabilities will be included in the calculation procedure. For
example, Figure 5.5 shows a case where Task 1 is selected 25% of the time,
Task 2 is selected 45% of the time, and Task 3 is selected 30% of the time.
The resulting end probabilities for the three possible consequences have been
revised accordingly. Note that all the probabilities at the end of all the paths
add up to 1 in this case. Table 5.3 presents a summary of the probabilities of
the three consequences for the case of weather-dependent task durations. The
examples presented above can be extended to other decision problems in
engineering and manufacturing that can be represented in terms of decision
tables and trees.

5.4 DEMPSTER-SHAFER THEORY

Dempster—Shafer theory is another technique of handling uncertainty in
expert systems. The theory attempts to distinguish between ignorance and
uncertainty. Ignorance is definitely different from uncertainty and should be
treated differently. Not knowing the specific value of a variable does not
necessarily imply that the variable is subject to uncertainty. With classical
probability theory, we are required to consider belief and disbelief as func-
tional opposites. That is, if A, B, and C are the only three events in a sample
space (S) and we know that P(A) = 0.3 and P(B) = 0.6, then classical
probability theory would calculate 0.1 as the probability for the event C since
P(S) = 1.0 and P(A) + P(B) + P(C) = P(S). Unfortunately, this may not
be accurate in representing human reasoning, since it is possible for a person
to believe or disbelieve three different items with the same level of assurance
(or probability). The ““probability”” of C may actually have nothing to do with
uncertainty or probability. The fact may be that we are ignorant of the assur-
ance level of C. Thus, knowing the probabilities of A and B does not neces-
sarily imply that we can infer the probability of C.

In an attempt to overcome the shortcomings of classical probability in
representing human reasoning, Dempster proposed a generalized theory of
uncertainty versus ignorance [22]. The theory, which was later extended by
Shafer [92], has come to be known as the Dempster—Shafer (D-S) theory of
evidence. The theory is based on the notion that separate probability masses
may be assigned to all subsets of a universe of discourse rather than just to
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0.65
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Rain
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Task 1 No Rain
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Task 3 Rain
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Figure 5.5. Probability distribution for task selection.
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(0.031500)

(0.058500)

1.0

indivisible single members as required in traditional probability theory. As a
result, D—S theory permits the following inequality:

P(A) + P(B) = 1

0

To illustrate the application of D-S theory, let us assume a universe of dis-
course representation X and a set corresponding to n propositions. We will
assume that one and only one of the propositions is true. The propositions
are assumed to be exhaustive and mutually exclusive. Define all the subsets

of X as follows:
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H={A)3ACX

The set H contains 2" elements, including the null set and X itself. Let the
set function f, called the basic probability assignment, defined on H be a
mapping to the interval [0, 1]. That is,

fH—[0,1]DVACX, f(¢)=0 and > f(A) =1

ACX

The function f defines a probability distribution on H as well as X. This
is in contrast to classical probability theory, where probability distribution is
defined only on the individual elements of the sample space X. The function
f represents the measure of belief committed exactly to A. A belief function,
Bel, corresponding to a specific f for the set A, is defined as the sum of
beliefs committed to every subset of A by f. In other words, Bel(A) is a
measure of the total support or belief committed to the set A and establishes
a minimum value for its likelihood. The belief function is defined in terms
of all belief assigned to A as well as to all proper subsets of A. That is,

Bel(A) = 2, f(B)

BCA
For example, if X contains the mutually exclusive subsets P, Q, U, V, and W

and we are interested in the particular subset A = { P, Q, W}, then we will
have:

Bel({P, O, W}) = f({P, O, W} + f({P, O} + fFH{Q. W}) + fF({P, W})
+fqPH + FAQH + FU{W))

Some important definitions related to D—S theory are presented below:

5.4.1 Support Function
The support function of the subset A is defined as Bel(A).

5.4.2 Plausibility
The plausibility of A is defined as:
PL(A) = 1 — Bel(A9)
5.4.3 Uncertainty of A
The uncertainty of a subset A of X is defined as

U(A) = PL(A) — Bel(A)
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5.4.4 Belief Interval

The belief interval for a subset A (i.e., the confidence in A) is defined as the
subinterval

[Bel(A), PL(A)] of the interval [0, 1]

5.4.5 Focal Elements

The subsets A of X are called focal elements of the support function Bel when
fA) > 0.
We further define the following:

Bel(¢) = 0
This indicates that no belief should be assigned to the null set.

BelX) =1

This indicates that the “‘truth” is contained within X.

5.4.6 Doubt Function
The doubt of A is defined as:

D(A) = Bel(A°)

This is a measure of the extent to which one believes in the complement of
A, that is, the level of doubt associated with A.

Some of the most common operational properties of belief and plausibility
functions are presented below:

PL(¢) = 0

PL(XY) = 1

PL(A) = Bel(A), V A
Bel(A) + Bel(A) =1,V A
Bel(A) < Bel(B), V A C B
PL(A) = PL(B), VA C B

Some examples of belief intervals and their explanations are presented
below:



118 PROBABILISTIC AND FUZZY REASONING

Bel, (A)
SiAD fiA) . . . S1 A

Sf2Bq)

J2®2)

Bel, (B)

S2By)

Figure 5.6. Combination of belief functions.

[Bel(A), PL(A)] = [0, 0] Denotes belief that the proposition is false
[Bel(A), PL(A)] = [1, 1] Denotes belief that the proposition is true
[Bel(A), PL(A)] = [0, 1] Denotes no belief that supports the proposition
[Bel(A), PL(A)] = [1, 0] Denotes belief that supports the proposition
[Bel(A), PL(A)] = [0, 0.9] Denotes partial disbelief in the proposition
[Bel(A), PL(A)] = [0.4, 1] Denotes partial belief in the proposition
[Bel(A), PL(A)] = [0.4, 0.8] Partial belief and disbelief in the proposition

A consolidation function is used in D-S theory to combine evidence avail-
able from multiple knowledge sources to reduce uncertainty. The combining
function is defined as Bel,©Bel,. Given two probability assignment functions
f, and f,, corresponding to the belief functions Bel, and Bel,, let A, . . .,
A, be the focal elements for Bel, and let B,, . . . , B, be the focal elements
for Bel,. Then f,(A;) and f,(B;) each assign probability masses on the unit
interval [0, 1]. The probability masses are combined orthogonally as shown
in Figure 5.6.

The unit square in the figure represents the total probability mass assigned
by both f, and f, for all their common subsets. A particular cell within the
square, shown shaded in the figure, has an assigned value depicted as f,(A,)
f2(B)). Any subset C of X may have one or more of the cells committed to
it. Consequently, the total probability mass committed to C is defined as:



5.5 CERTAINTY FACTORS 119
f(C) =2 fiA)fB), Vi,j2ANB=C
LJ

The sum in the above equation must be normalized to account for the
null intersections that have positive probabilities. These null intersections
A; N B; = ¢ must be disregarded in the combination of the belief functions.
Thus, the general form of Dempster’s rule of combination is given by:

2 fid)f(B)

> fiA)fAB)

ANB#d

m, © m, =

5.5 CERTAINTY FACTORS

Most heuristic methods use some sort of quasiprobabilistic technique to han-
dle uncertainty. Two of these techniques are certainty factors and fuzzy logic.
The most common representation of heuristic weights is the use of certainty
factors (or confidence factors). In this approach, numbers greater than O are
used for positive evidence and numbers less than O are used for negative
evidence (e.g., —1 to 1, —100 to 100). These numbers are used merely as
heuristics, and no criterion of theoretical correctness is associated with them.

The popular MYCIN expert system uses certainty factors in handling un-
certainties. MYCIN was developed to diagnose and recommend therapies for
bacterial infections in blood. It associates a certainty factor (CF) with each
of its production rules. The certainty factor indicates the degree of certainty
with which each fact or rule is believed to hold and is a number between —1
and 1. In MYCIN consultation, a frequently fatal cause of a disease would
be assigned a higher certainty than another one that is more likely, but rarely
fatal. To evaluate MYCIN’s production rules, the following steps are followed

[8]:

1. The CF of a conjunction of several facts is taken to be the minimum
of the CF’s of the individual facts. This is analogous to the view that
“the weakest link in a chain determines the strength of the chain.”

2. The CF of a disjunction of several facts is taken to be the maximum of
the CF’s of the individual facts.

3. The CF for the conclusion produced by a rule is the CF of its premise
multiplied by the CF of the rule.

4. The CF for a fact produced as the conclusion of one or more rules is
the maximum of the CF’s produced by the rules yielding that conclu-
sion.

Most of the procedures for manipulating certainty factors follow what are
known as ad hoc techniques. These techniques typically have intuitive appeal
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but with no rigorous theoretical backing. They are used in place of the more
formal methods as a practical approach to dealing with uncertainty. The for-
mal theoretical approaches often pose difficulties in implementation. Several
ad hoc procedures have been used with acceptable results in expert systems.
The example below illustrates one ad hoc technique for combining certainty
factors. Suppose we want to establish fact D, and the only rules available are
the following:

Rule 1: If A and B and C, then CONCLUDE D (CF = 0.8)

Rule 2: If H and I and J, then CONCLUDE D (CF = 0.7)
If facts A, B, C, H, I, and J are known with the respective CF’s of 0.7,
0.3, 0.5, 0.8, 0.7, and 0.9, then the following computations would produce a
CF of 0.49 for D.

From Rule 1:

min {CF(A), CF(B), CF(C)} = min {0.7, 0.3, 0.5}
=03
CF(D) based on Rule 1 = 0.3(0.8)

=024
From Rule 2:

min {CF(H), CF(I), CF(J)} = min {0.8, 0.7, 0.9}
= 0.7
CF(D) based on Rule 2 = 0.7(0.7)
= 0.49

Rule combination:

CF(D)

max {CF(D),, CE(D),}

= max {0.24, 0.49}
0.49

This method of handling uncertainty has been used quite extensively in
many expert systems. However, it does have some flaws. For example, it is
not suitable for situations involving high levels of interaction between goals.
Several variations of the mathematical approach to combining certainty fac-
tors have been proposed and used in many systems.
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0.0 0.7 1.0

Initial Factor = 0.7

Subsequent Factor = 0.4
Combined Certainty Factor = 0.7 + 0.4(1 - 0.7) = 0.82

Figure 5.7. Combination of certainty factors.

Figure 5.7 shows an example of combining a series of certainty factors for
one parameter. The method illustrated in the figure uses certainty levels be-
tween 0 and 1 (or between 0% and 100%). This method may be suitable for
systems using nonmonotonic reasoning, in which case parameter instantia-
tions may vary based on subsequent levels of certainty. The combined cer-
tainty factor is calculated by the formula below:

CCF = (initial CF) + (subsequent CF)(1 — initial CF)

The formula is applied repeatedly in case of more than two certainty factors
in series. The flaw in this method, though, is that if the very first certainty
factor encountered for the parameter is 1, then all subsequent certainty values
for the parameter would not have any effect on the prior instantiation. The
method then regresses to monotonic logic.

Figure 5.8 shows how the certainty level of a premise induces a certainty
level on the conclusion of a rule. Figure 5.9 shows the effect of combining
an uncertain premise and an uncertain rule. Researchers and developers of

IFATHENB

Premise A, 0.6 Conclusion B, 0.6
RULE

Figure 5.8. Premise certainty factor induced on conclusion.
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(IF ATHEN B), 0.7

Premise A, 0.6 Conclusion B, 0.42
RULE

CF(B) = 0.6(0.7) = 0.42

Figure 5.9. Conclusion certainty factor.

expert systems continue to investigate mechanisms that could more accurately
reflect the reasoning process of humans when dealing with uncertain infor-
mation. Despite their deficiencies, ad hoc methods for combining certainty
factors have been used more extensively than the more formal approaches.
This is because the formal approaches are difficult to implement, particularly
if certain assumptions must be met for them to be valid. Sensitivity analysis
conducted by Buchanan and Shortliffe shows that the ad hoc approaches,
while not optimal, satisfy the basic needs in most problem scenarios [8].
However, much more research is needed before a standard approach can be
developed.

5.6 FUZZY LOGIC

Another approach to managing uncertainty is the concept of fuzzy sets, first
introduced by Zadeh in 1965 [107]. The objective of fuzzy sets was to gen-
eralize the notions of a set and propositions to accommodate the type of
fuzziness or vagueness in many decision problems. Since their introduction,
fuzzy sets have attracted much attention. The emergence of practical appli-
cations of artificial intelligence has intensified the interest and research in
fuzzy sets. Recently, fuzzy logic has found a wide variety of applications
ranging from industrial process control and consumer electronics to medical
diagnosis and investment management [108]. In contrast to classical logic,
fuzzy logic is aimed at providing a body of concepts and techniques for
dealing with modes of reasoning that are approximate rather than exact. Ex-
tensions of fuzzy sets now include concepts such as fuzzy arithmetic, possi-
bility distributions, fuzzy statistics, fuzzy random variables, and fuzzy set
functions. Among the derived concepts is the concept of fuzzification, which
permits the incorporation of fuzzy reasoning into any normal set.

In formal truth logic, it is required that every proposition be either true (1)
or false (0). While “0”” or “1” treatment fits conventional computer process-
ing perfectly, it can impose serious restrictions on machine reasoning intended
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TABLE 5.4. Degree of Membership for Fuzzy Set
Grade of Membership

Average Points (Possibility Value)
2.00 0.00
2.25 0.12
2.50 0.25
3.50 0.82
3.60 0.90
4.00 1.00

to duplicate the imprecise aspects of human reasoning. Fuzzy logic is a tech-
nique for dealing with sources of imprecision and uncertainty that are non-
statistical in nature.

Fuzzy logic uses a multivalued membership function to denote membership
of an object in a class rather than the classical binary true or false values
used to denote membership. In fuzzy logic, the source of imprecision is the
absence of sharply defined criteria for class membership rather than the pres-
ence of random variables. Each class contains a continuum of grades of mem-
bership. Thus, a product will not be considered to be either good or bad.
Depending on the product’s actual quality level, it will have a certain degree
of being good or being bad. A question of interest is to determine when a
product makes the transition from being a bad product to being a good prod-
uct.

In many practical real-world problems, the transition point is not clearly
defined. It is fuzzy! The degree of membership in one category or another
will depend on the membership functions that users or producers define to
convey the varying levels of quality of the product. A fuzzy set is described
by a membership function that maps a set of objects onto the interval of real
numbers between 0 and 1. In standard set theory, an object is either a member
of a set or not a member of the set. In fuzzy set, the transition from mem-
bership to nonmembership is gradual rather than abrupt because there are no
distinguishable boundaries.

To illustrate the concept of fuzzy sets, we define set A to be the class of
“high” academic grade point averages. Because the definition of ‘“high” is
subjective, we assign a range of average points and corresponding possibility
values to the set A as shown in Table 5.4.

The term high can be modified with linguistic hedges such as “quite,”
“very,” and ‘“‘somewhat.”” Figure 5.10 shows a distribution of grade points
based on linguistic hedges. Given a particular specification of grade point
level, the distribution can be used to determine an appropriate classification
of the grade point level. For example, a grade point of 3.6 may have a clas-
sification of ‘““very high” with fuzzy confidence of 0.7, a classification of
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Figure 5.10. Example of fuzzy set distribution with modifiers.

“high” with confidence of 0.9, or a classification of “‘quite high” with a fuzzy
confidence of 0.99.

With the use of fuzzy sets, the imprecise aspects of human reasoning can
be captured in machine reasoning. Though the theory of fuzzy logic has been
around for quite a while, it is just becoming popular for knowledge-based
systems applications.

5.6.1 Definition of Fuzzy Set

Let A be a set of objects defined over a sample space X. For a finite set
defined as

X =x,%X,...,%

n

we can represent A as a fuzzy set with the linear combination below:
A = ux), u)(xy), . .., u,x,)

where u, is the grade of membership of x; in A. In general, for a sample space
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of objects defined as X = {x}, the fuzzy set A in X is a set of ordered pairs
defined as:

A={xux} xe€A

A value of u,(x) = 0 indicates that x is not a member of A, while u (x) = 1
implies that x is completely contained in A. Values of u,(x) between 0 and 1
indicate that x is a partial member of A. Characteristic membership functions
for fuzzy sets are different from probabilities and should not be confused with
probabilities. Probability is a measure of the degree of uncertainty based on
the frequency or proportion of occurrence of an event. By contrast, a fuzzy
characteristic function relates to the degree of vagueness which measures the
ease with which an event can be attained.

With the definition of fuzzy set, we have a means of expressing a function
GOOD(x) to convey the information about the quality level of the manufac-
tured product mentioned earlier. The fuzzy set A can be defined as:

A = {good}

That is, A is the set containing those items that can be classified as “good.”
Obviously, some items will be stronger members of the set than other items.
There will be some items at the low end of good and some items at the high
end of good.

For this example, we can define x as a quantitative measure of a particular
quality characteristic of the product. An example is the measure of the surface
finish or surface roughness of the product. If the measures of surface rough-
ness range from, say, 1 to 50, then we might assign the membership values
shown in Table 5.5. A surface roughness of 1 is the most desirable, while a
surface roughness of 50 is the least desirable in this particular example. Note
that Table 5.5 indicates that the highest degree of membership is 0.95 (less
than 1). This is logical since it may be impossible to obtain a perfect surface
finish without any roughness at all. A fuzzy set is said to be normal if its
highest degree of membership is one.

Figure 5.11 presents what the author calls a fuzzy set grid. The grid shows
the gradual change in the degree of membership from one level to another.
Even though discrete lines are used to depict the grid in the figure, the changes
in membership grade are, in fact, so gradual that the changes do not follow
a discrete pattern. The figure represents a bivariate set whereby an item is
classified as “good” based on two quality characteristics: surface roughness
and porosity. Items with low values of surface roughness (i.e., high surface
finish) and low values of porosity have the strongest degree of membership
in the fuzzy set A, which is defined as A = {good}. That is, A is the set of
good products. The degree of membership in A slowly decreases as surface
roughness and porosity increase.
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TABLE 5.5. Product Quality Classification Using

Fuzzy Set
Degree of Membership

Surface in the GOOD set
Roughness (x) 1, (x)
1.00 0.95
5.20 0.88
10.50 0.70
35.00 0.10
45.00 0.05
50.00 0.00

An item located in the upper left-hand corner of the grid has the highest
degree of membership in A. That is, it is the best of the good items. An item
located in the lower right-hand corner of the grid has the lowest degree of
membership in A. That is, it is the worst of the good items. The bivariate
fuzzy set grid may be extended to a trivariate (three-factors) case. In that case,
the grid would be represented as a solid box with nonhomogeneous density.
The density of the box would change gradually in different directions to
indicate varying degrees of membership in the trivariate fuzzy set.

Surface Roughness (x) —————

Porosity (y)

Figure 5.11. Fuzzy set membership grid.
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Operations on fuzzy sets are similar, in some respects, to the operations
on conventional sets. The standard operations and characteristics of fuzzy sets
are presented below. Let A, B, C, D, . . . be fuzzy sets defined on the universal
set X. Then we have the following:

Equality: A = B if and only if u,(x) = ugz(x), Vx e X
Containment: A C B if and only if u,(x) = up(x), Vxe X
Intersection: u,g(x) = min, {u,(x), uy(x)}

Union: u,~g(x) = max {u,(x), ugy(x)}

Complement: u,(x) = 1 — u,(x)

The intersection of two fuzzy sets A and B is the largest fuzzy subset that
is a subset of both. Similarly, the union of two fuzzy sets A and B is the
smallest fuzzy subset having both A and B as subsets. Note that in the prop-
erties defined above, the min and max operators are applied to the member-
ship values u,(x) and ugz(x) and not the fuzzy sets themselves. Thus, the min
and max operators should not be confused with the largest and smallest fuzzy

subsets explained above. Operational properties that hold for fuzzy sets are
presented below:

Distributive property:
AUBNC)=AUB)NAUC)
ANC)=ANBUANC)
Associative property:
AUBUC=AUBUCO)
ANB)NC=ANBNCOC)
Commutative property:
ANB=BNA
AUB=BUA

Idempotence property:
ANA=A

AUA=A
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DeMorgan’s Law:
u(AﬂB)’(x) = Uyyp(X)

u(AUB)’(x) = Uynp(X)

The following relationships should also be noted:

ANA # ¢
AUA #X
ANe¢=4¢
AUG=A
ANX=A
AUX=X

The first two expressions above hold because for u,(x) = a, where 0 < a <
1, we have:

Uy, (x) = max{a, 1 — w}

# 1

Uyna(x) = minfa, 1 — a}

£0

Referring to our earlier example, Table 5.5 gives the membership values
for the set GOOD based on the observed surface finish of the product. Such
membership values may be obtained through empirical studies or subjective
experimentations. In some cases, it is possible to define a function that gen-
erates the membership values directly. Such a function might be of the form
presented below. Figure 5.12 presents a plot of the function u,(x).

_JVx -1, ifl=x=2
u,(x) =

0, otherwise

The functional form of the membership function may be based on char-
acteristics relating to the utility of the item with respect to its various quality
levels or some other criterion of interest.

Certain operations that are unique to fuzzy sets are presented below.
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Uy(x) = x—1

iocr——— — — >
|
|
Uu¥) |
|
|

0.0 | > X

0.0 1.0 2.0

Figure 5.12. Plot of degree of membership function.

Dilation: The dilation of A is defined as:
DILA) = Vu,(x), YVx€X
Concentration: The concentration of A is defined as:
CONA) = [u,(0]?, VxeX
Normalization: The normalization of A is defined as:

U, (x)

NORM@A) = m,

VxeX

For the function presented in Figure 5.12, DIL(A), CON(A), and NORM(A)
are shown in Figure 5.13. Dilation tends to increase the degree of membership
of all partial members. Concentration is the opposite of dilation. It tends to
decrease the degree of membership of all partial members. Normalization
performs the function of normalizing the membership function.

Fuzzy membership functions can be used to generate confidence factors in
modus ponens reasoning as an alternative to probability and certainty factors.
For example, referring to the product quality example presented earlier, we
may have the following rule:

If surface-roughness is-less-than 10, then product-quality is good
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CON(A) = x — 1
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Figure 5.13. Unique operations on membership functions.
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Acceptable

Too High
1.0

0.0

Surface Roughness (X) ———

Figure 5.14. Unidirectional membership functions.

Now suppose we are given the following premise:
Surface-roughness is 10.5

Our conclusion would be that the product is good but with a certain level of
fuzzy membership level (FML). That is,

Product-quality is good (FML = 0.70)
where FML = U,(10.5) = 0.70 as presented in Table 5.5.

Figure 5.14 presents two unidirectional membership functions. Curve A is
defined for the set of good products based on the surface roughness. Note
that as surface roughness increases, the degree of membership in the GOOD
set decreases. Curve B is defined for the set of bad products. As the surface
roughness increases, the degree of membership in the BAD set increases.
Under fuzzy set reasoning, a product can be classified as being both good
and bad. It is the degree of membership in the specific fuzzy set that makes
a difference. Note that an item with a surface roughness located at the inter-
section of curves A and B has equivalent degrees of membership in either of
the two sets GOOD and BAD. At this point, we would be indifferent to
classifying the item as either good or bad.

Figure 5.15 presents two bidirectional membership functions. A bidirec-
tional function is defined as one that starts at one end, reaches a peak or
valley, and then changes direction. Curve B may be suitable for applications
dealing with parameters, such as temperature, where both the low end and
high end of the function are desirable. As shown in Figure 5.15, temperatures
at the low end and at the high end have lower degrees of membership in the
set of ACCEPTABLE-TEMPERATURE, while temperature values in the mid-
dle range have higher degrees of membership. This, for example, may be the
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Good

Too High

Too Low
1.0

B
A/(T

emperature)

0.0

Temperature Level (x) ——»

Figure 5.15. Bidirectional membership functions.

case when monitoring the ambient temperature of a work station. Tempera-
tures that are too low are not desirable, as are temperatures that are too high.
Curve A in Figure 5.15 presents a situation that is opposite to the temperature
example. Curve A indicates that both the values at the low and high ends are
more desirable than those in the middle range. Examples for this case are left
as an exercise for the reader.
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FUZZY SYSTEMS

While neural networks are an excellent tool for modeling unknown systems
and solving optimization problems, fuzzy systems provide an alternative ap-
proach to representing problems and processing information. While there are
many computational algorithms developed to process numerical data, fuzzy
systems provide an alternative way to manipulate information, not just data.

In neural networks, data reduction is obtained by building a model out of
the given data. When a model adequately predicts the output of an unknown
input, the network is said to model the underlying dynamics of the system.
Knowledge is therefore encapsulated in the derived model. In fuzzy logic,
knowledge can be captured in terms of rules and linguistic variables. When
the rule set adequately process the fuzzy inputs to produce an adequate re-
sponse, the rule set and the associated definition of the linguistic variables
are said to have modeled the underlying structure of the system.

6.1 CRISP LOGIC VERSUS FUZZY LOGIC

Much of the foundation of fuzzy logic stems from the roots of classical logic.
Hence before the formal introduction of fuzzy sets is presented, a brief review
of classical logic is given to highlight the parallel and the differences between
the two approaches.

6.1.1 Crisp Sets

In classical set theory, a set is a collection of objects. For example, a class is
a collection of students. A set of positive numbers is a collection of all num-
bers that are positive. There are many commonly used sets, as defined below.

133
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Z={...-2,-1,0,1,2,...}, set of all integers

N = {1, 2, 3, ...}, set of all positive integers

N, = {0, 1, 2, 3, . . .}, set of all nonnegative integers
{1,2,3,...,n}

Ny, =10,1,2,3,...,n}

N,

n

R: set of all real numbers

R*: set of all positive real numbers

Participation in the set is all or nothing. In other words, either an object is
part of the set or it is not. On one hand, if an object x is a member of the
set A, then it is written x € A. On the other hand, if the object x is not a
member of the set A, then it is written as x ¢ A.

There are primarily three ways to define a set. The first way is to enumerate
all the members of the set. For example, N = {1, 2, 3, .. .} is the set of all
positive integers and the set is defined by enumerating all the elements in N.
When there are too many items to enumerate, it is sometimes easier to identify
the elements by specifying the properties of the set. For the set of all positive
integers, the set can also be defined as N(x) = {x | x > 0, x an integer}. Here,
the symbolism said the set N is composed of all numbers x where x is greater
than 0 and x is an integer. This definition is equivalent to the first definition
by enumeration. A third way to define a set is to specify the degree of par-
ticipation in the set for each element of interest. This is called the character-
istic function, yx,: X—{0, 1}. For classical set theory, the characteristic
function maps onto a set of two elements, O and 1. Thus, the characteristic
function for x = 0 for set N is 0, i.e., x,(0) = 0, while the characteristic
function for x = 1 for set N is 1, i.e., x,(1) = 1. In summary, the three ways
to define a set are.

Enumeration: A = {a,, a,, a;}
Rule property: A = {x|p(x)}
Characteristic function:  y,(x) = 1ifx € A

xax)=0ifxe A

A set with no elements is called an empty set and is written as . A
universal set is one that contains all elements of interest. A finite set is a set
with a finite number of elements. An infinite set is a set with an infinite
number of elements. The set A defined above is a finite set, while the set N
is an infinite set. The cardinality of a set, indicated by two vertical bars (|.|),
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is the number of elements in the set. The cardinality of N is infinite, |N| =
o, while the cardinality of A is 3, i.e., |A| = 3. A power set is a new set
consisting of all possible ways of combining various elements in the old set.
The power set of A consists of 24/ +1 elements: P(A) = {0, a,, a,, a;, a,a,,
a,as, ayas, 4,05, Q0,05 ).

Two sets are equal (=) if both sets have identical elements; otherwise they
are not equal (#). If A = {a,, a,, a3} and B = {a,, a,, a;}, then A = B. If
C = {a,, a,}, then A # C. A subset (C) is a set that contains some or all of
the elements that are in the original set. A proper subset (C) is a set that
contains strictly some of the elements that are in the original set. Hence A C
Band A ¢ Cbut C C A.

There are three commonly used operators related to sets. The COMPLE-
MENT (~) operation is an operator that produces a set containing elements
that are not in the original set. A relative complement is the complement of
a set with respect to another set. Hence the relative complement of A with
respect to set Bis B — A = {x|x € Band x & A}. The absolute complement
is the complement of a set with respect to the universal set. Hence the absolute
complement of A is ~A = {x | x & A}. Assume that there is a class with
five students. The universal set in this case is the set of all five students, U
= {Adam, Beverly, Charlie, David, Eponine}. Let the set of males be M =
{Adam, Charlie, David} and the set of females be F = {Beverly, Eponine}.
The absolute complement or complement for short of the set of males is the
set of females, ~M = F.

The UNION and INTERSECTION operation are called binary operators
because they operate on two sets, producing a third set. The union (U) of
two sets is a new set composed of elements that are in either or both of the
original sets, i.e., A U B(x) = {x | x € A or x € B}. For example, the union
of the set of males and females is the entire universal set. Likewise, the
intersection (N) of two sets is a new set composing of elements that must
exist in both of the original sets, i.e., A N B(x) = {x | x € A and x € B}.

There are many well-established properties related to three set operators.
We will state without proof some of these properties. Let U be the universal
set.

Identity: AU =A ANU=A
Idempotency: AUuU=U ANBd=20
Involution: A\ = A

Commutativity: AU B=BUA ANB=BNA

Associativity: AUBUO=AUBU ANBNO=ANBN
C C
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Distributivity: ANBUO=ANBU AUBNOC=AUBN
(AN QO AU O
Absorption AUANB) =A ANAUB) =A

Three special properties are noteworthy. In classical set theory, the law of
contradiction says that the intersection between a set and its complement
produces an empty set:

ANA =0

In other words, there is nothing in common between the set and its comple-
ment; that is an element cannot be in the set and in its complement at the
same time. The law of excluded middle says that the union of a set and its
complement yields the universal set:

AUA=U

This means that an element must either belongs to a particular set or to its
complement. There is no middle ground. Finally, DeMorgan’s law relates the
union and the intersection operator.

(AN B\=A\U B\
(AU B\ =A\nN B\

DeMorgan’s law says that the complement of the intersection of two sets
is the union of the complement of each individual set. Likewise, the comple-
ment of the union of two sets is the intersection of the complement of each
individual set.

Disjoint sets are sets that do not intersect with one another, i.e., A N B =
(. Nested sets are sets that are successively subsets of the previous set. Any
set that is defined by a single interval of real numbers is called a convex set.
Any set that is defined by more than one interval is not a convex set. The
upper bound of a finite set is the maximum element of the set. For an infinite
set, the supremum is the largest value of the infinite set. Likewise, the lower
bound of a finite set is the minimum element of the set. For an infinite set,
the infimum is the smallest value of the infinite set.

6.1.2 Fuzzy Sets

In classical set theory, participation of an element in a set is either all or
nothing. Hence the characteristic function maps an element into either 0 (not
in the set) or 1 (in the set):
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Xa: x—{0,1}

In fuzzy set theory, the participation of an element in a set is a matter of
degree from all to nothing. In other words,

m: x—[0,1] or A: x—[0,1]

where u, is called the membership function for the set A. Here, w, and A
are synonymous since each set A is uniquely defined by a membership func-
tion.

In real life, there are many occasions where the participation of an element
in a set is not all or nothing. A tall person is generally accepted to be someone
whose height is more than 6 ft. However, if we line up 10 persons whose
height ranges from 5 ft to 7 ft, then the concept of tallness begins to be less
precise. Those towards the 7-ft end are generally considered to be tall, while
those towards the 5-ft end are generally considered to be not tall. But it is
harder to determine if those in the middle are tall or not. To a somewhat tall
person, those who are taller are tall. To someone who is 4 ft tall, even 5 ft,
6 in. is tall. This shows that the concept of tallness is really a matter of degree
and not a matter of all or nothing.

In speaking about height, giving a numerical value may seem to convey a
precise data value, but it speaks nothing of the connotation regarding the data
point. But in everyday language one speaks of a person as kind of tall, very
tall, not tall, etc. Consider the height of an adult: the range possibly goes
from 1 ft to 7 ft. Description of height can include short, medium, or tall.
These descriptions can be defined as in Figure 6.1.

A short person can be anyone less than 3 ft tall. This person has full
participation in the set of short people and has no participation in the set of
medium-height or tall persons. When a person’s height is more than 3 ft, this
person begins to have less participation in the set of short persons but at the
same time has more participation in the set of medium height persons. In
contrast, Figure 6.1 also shows the membership functions for crisp sets. A
person with a height less than 4 ft belongs to the set of short persons. Then
a person with a height of 4 ft, 1 in. belongs to the set of medium-height
persons. Likewise, a person whose height is 5 ft, 11 in., belongs to the set of
medium-height persons (similar to the one whose is 4 ft, 1 in.), but the person
who is 1 in. taller, belongs to the set of tall persons. This clearly shows that
the boundaries of crisp sets are sharp while the boundaries of fuzzy sets are
not sharp at all. Thus the labels “crisp” and “fuzzy.”

In crisp logic, for a single variable such as height, the linguistic variable,
such as tall and short, describing the variable height is nonintersecting and
disjoint. A person is either short or medium height. In fuzzy logic, an object
may have participation in more than one set at the same time. Hence, a person
who is 4 ft, 6 in. may participate in both the sets for short people and the set
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Figure 6.1. Membership functions: (a) fuzzy sets and (b) crisp intervals.

for medium-height people. As this person grows taller, the participation in
the set of short people decreases and the participation in the set of medium-
height people increases.

A fuzzy set corresponding to a particular linguistic variable is defined by
the membership function. In general, a membership function can take on any
shape. A number of shapes have been commonly used.

Triangular shape: (I/aYx — )+ 1, xE[r —a,r]
(1/b)(r —x) + 1, x € [r, r + b]
0, otherwise

Trapezoidal shape: (I/aY x —r + 1, xE[r — a,r]
1, x € [r, s]
(1/b)(s —x) + 1, x E [s, s + b]

0, otherwise
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Exponential shape: Ax) = 1/+A/a)x — ), x E[r —a, r + a]
0, otherwise

Gaussian shape: A(x) = exp(—|a(x — 1)])

Cosine shape: Ax) = (1 + cos((l/a)m(x — b))/2, x € [r — a,
r + al

0, otherwise

Most membership functions have a number of common characteristics. The
membership values are nonnegative and range between 0 and 1. If the mem-
bership function rises to 1, the fuzzy set is called a normal set; otherwise it
is subnormal. In general, the membership decreases monotonically on the left
side and on the right side. A membership function can be decomposed into
a number of components. The base consists of the range that is nonzero
membership values. The core consists of the range with nonzero membership
values. The height is the maximum value of the membership function.

h(A) = sup, A(x)

When the height of the fuzzy set is one (#(A) = 1), the fuzzy set is normal,
when the height (h(A) < 1) is less than 1.

A membership function can be defined in a number of ways. Just like crisp
sets, a fuzzy set can be defined by its property or by the characteristic func-
tion. First, a membership function can be defined by its property either graph-
ically through a plot as shown in Figures 6.1 and 6.2 or through actual
descriptions through equations. Alternatively, a membership function can also
be defined by the characteristic function for each element in the range. Hence
the set of the medium-height people can also be defined as

M(x) = {0/1, 0/2,0.5/3, 1/4, 1/5, 0.5/6, 0/7}

The slash symbol does not refer to an arithmetic division operation; rather,
the ‘““numerator” refers to the membership degree while the ‘“‘denominator”
refers to the corresponding element.

It is important to note that a crisp set is a special case of a fuzzy set. When
the boundary of a fuzzy set is sharp, the membership values will only take
on 0 and 1 values, thus yielding a crisp set. This means that all fuzzy oper-
ations must also satisfy the requirement of their crisp operation counterparts.
In fact, the crisp characteristics can be considered as the boundary conditions
for the fuzzy operations.
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Figure 6.2. Membership function shapes.

6.1.3 Fuzzy Set Construction

The definition of a fuzzy set lies in the shape of the membership function. A
number of methods have been proposed in the literature for determining the
membership shape. The simplest method is a direct method with one expert.
The membership function is drawn in a way closely resembling the underlying
meaning of the fuzzy set for the linguistic variable. For example, given the
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crisp interval for the high and low values, the boundaries are made unsharp
to approximate the meaning more closely.

Another direct method is based on inputs from multiple experts. Multiple
experts are asked to determine the characteristics of the linguistic variables.
These inputs are then averaged to form the shape of each membership func-
tion. This is a common way to obtain a membership function from a popu-
lation of inputs.

Unweighted average: A(x) = (1/n) 3,_," a,(x)
Weighted average: A(x) = 3._"c¢;ax) when 3,_" ¢; = 1

An alternative to obtaining the membership function shape from experts is
indirectly by pairwise comparison. Experts are presented with two samples
from the linguistic variable and the experts are asked to compare the degree
of participation for the two given samples. At the end, the results of the
comparisons are compiled to form the shape of the membership functions.

6.1.4 Fuzzy Set Operations

Similar to crisp set theory, there are three basic operations for fuzzy sets:
complement, union, and intersection. Recall that the characteristic function
for elements in a crisp set is either O or 1, while that for a fuzzy set is between
0 and 1. Therefore the complement can be defined as

A\(x) =1 — Ax)

This is called the standard complement. Note that if A(x) is crisp, then the
complement of 0 is 1 and the complement of 1 is 0.

An extension of the crisp intersection operation is the standard intersection
operation for fuzzy sets. The intersection of two sets gives what is common
between the two sets. Hence the standard intersection is defined as

(A N B)(x) = min[A(x),B(x)]

In some literature the intersection is called a meet operation. An extension of
the crisp union operation is the standard union operation for fuzzy sets and
is defined as

(A U B)(x) = max[A(x),B(x)]

The definitions of standard complement, standard intersection and standard
union lead to a set of properties that is similar to that for the crisp set case.
However, it is important to note that for fuzzy sets, the operation does not
obey the law of contradiction or the law of the excluded middle. This is
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X4

Membership of these
points not greater
than min (A(x4), A(Xo))

Figure 6.3. An example of a nonconvex set.

obvious because the characteristic function does not take on values of 0 and
1 only. Figure 6.3 shows an example of a nonconvex set.

A fuzzy set is convex if for any A € [0,1], the following condition is
satisfied.

A(x, + (1 — AM)x,) = min[A(x)),A(x,)]

The rules for one fuzzy set being a subset of another fuzzy set can be
directly extended from the crisp case. In crisp set, the measure of the number
of elements in a set is called the set cardinality. For fuzzy sets, this concept
of set cardinality is extended to indicate the “‘size” of the fuzzy set. Scalar
cardinality is defined as

Al = ZA(x)
This is also called the sigma count.

There is another way to relate two fuzzy sets together, called a subsethood
measure. It measures the degree of one fuzzy set (B) being included in another
fuzzy set (A).

S(A,B) = |A N B|/|A|
Or alternatively,

S(A.B) = 1/|A] (A] = %, max(0,A(x) — B(x)))

Note that the subsethood of S(A,B) is different from S(B,A). While the nu-
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A(X)

a a cut

=
—_
x

Corresponding interval

Figure 6.4. Example of a-cuts.

merator is the same, the intersection of the two sets, the denominator is not
the same. For S(A,B), the subsethood indicates the degree of B in A, while
for S(B,A) the subsethood indicates the degree of A in B.

Another concept for comparing two sets is the Hamming distance, which
measures the number of disparate elements in the two sets. Since the partic-
ipation is not whole, the distance between two fuzzy sets must be modified
to measure the distance between each element of the two sets.

d(A.B) = %, |A(x) — B(x)|

It is evident from this section that most of the crisp concepts can be directly
extended for fuzzy sets. The operations are extended because the definition
for the extension degenerates back to the original definition when a fuzzy set
degenerates into a crisp set.

6.1.5 «a-Cuts

The principle of an a-cut, as shown in Figure 6.4, is fundamental to the
understanding of a fuzzy set. While a regularly shaped membership function
can be described by lines or curves, the equations describing the shapes are
rather complicated when the membership function becomes irregular. Another
way to view a membership function is to see the function as a stack of
pancakes or horizontal cuts. Each horizontal cut through the membership
creates a range with the same membership value. As these horizontal cuts are
placed one on top of another, the original membership is recovered. By def-
inition, an a-cut is a crisp set:

A = (xA®) = a}

and correspondingly a strong a-cut:
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A(X)
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A(x)
Qq = B
X
Qo |-
- AX) +
X -
Qo —
X

Figure 6.5. Fuzzy set decomposition.

A = {x|A(x) > a)

Consider the example of height again. Assume that the range of the height
variable is an integer and goes from 1 ft to 7 ft. Assume that the set of
medium-height people can be defined as shown in Figure 6.5. The member-
ship function for a person who is medium height can be defined by enumer-
ation as M(x) = {0/1, 0/2, 0.5/3, 0.5/4, 1.0/5, 0.5/6, 0/7}. This means that
the a-cut for the various « values are ranges given below.

a=0: [3.6]
a=1: [5,5]

Note that the ranges form nested sets. Each range represents a pancake.
When the pancakes are placed one on top of another, the original membership
function is recovered. Since each cut gives a crisp set, the entire membership
function can immediately be recovered by the union of the properly scaled
crisp sets. This is the decomposition theorem.

A=U, a(*A)
A=U, a(*A)

a-cuts have a number of interesting properties. The definitions of core and
support can be succinctly defined by «-cuts.
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Core(A) = A
Support(A) = °*A

If @, < a,, then the relationship between different a-cuts is shown below.

alA ;) aZA
aI+A D) a2+A

Other properties are also given below.

ANB)y=°"AN-"B
“AUB)="AU*"B
A = CT97(AY)

The concept of the a-cut is used to generalize operations or properties on
crisp sets into operations or properties of fuzzy sets. Any operation or prop-
erty that is thus generalized from classical set theory into fuzzy set theory is
called cutworthy if the properties of the a-cuts are preserved. Likewise, any

operation or property that preserves the strong a-cut property is called strong
cutworthy.

6.1.6 Extension Principle

Given a crisp variable, a crisp function maps the values of the original variable
to another crisp variable. The function f represents a curve drawn on the plot
with x as the range and y as the domain (see Figure 6.6). It is also possible
to define the inverse function f~! relating y to x.

frx—y
fhy—-x
It is of interest to find out what happens to a fuzzy set defined on the

original crisp variable and how this fuzzy set shape would be changed on the
data space of the new variable.

fr A(x) — B(y)

The extension principle states that the new fuzzy set B(y) is related to the
original fuzzy set A(x) as follows:

B()’) = Supx\y:ﬂx) A()C)

Likewise, the inverse of the function on fuzzy sets can also be defined:
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f(x)

X

_l
z
=

S

A)

—_

Aq4(x)
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Figure 6.6. The extension principle.

A(x) = B(f(x))

Note that the inverse does not necessarily recover the original function.
This is because the mapping function f is not always uniquely invertible. The
inverse may not be a function at all. An example of the extension principle
is shown below.

Note that the membership function shape is not necessarily preserved after
the mapping. While the functional mapping may not have preserved the shape
of the membership function, the properties of the a-cut are nevertheless pre-
served. This means that given an a-cut through the original fuzzy set, the
mapping of this a-cut will yield the same a-cut on the transformed fuzzy set.

6.2 FUZZY OPERATIONS

In the previous section, the operation for complement, union, and intersection
was defined. In reality, there are infinite ways to define each of these opera-
tions. In this section we will consider the definition and behavior of fuzzy
operators. The varieties allow a more appropriate capture of the underlying
connotation indicated by the operator.
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6.2.1 Fuzzy Complement

The basic definition of the complement of a fuzzy set is the opposite of what
is defined in the original set. If the fuzzy set points to what is certain, then
the complement points to what is not certain. If the original fuzzy set points
to the degree of the participation in the set of interest, the complement points
to the degree of nonparticipation in the set of interest.

c: [0,1] = [0,1]
A number of properties define an operation as a complement operation.
The defining conditions are the boundary conditions obtained from crisp logic.
This is always the case because the fuzzy definition must necessarily degen-

erate to the crisp definition.

Boundary conditions:  ¢(0) = 1
Monotonicity: c(1)=20
cla)=chb)ifa=b>b

Other optional properties are nice to have but not always necessary.

Continuity: ¢ is a continuous function

Involutability: c(c(A) = A
Some examples of fuzzy complements are shown below.

Threshold complement: cla)y=1fora =t

cla@) =0fora >t

Standard complement: cla)=1—-a

Cosine complement: c(a) = 0.5(1 + cos ma)
Sugeno class complement: c(@) =1 — a1 + ra)
Yeager class complement: c (@) = —ant'v

In general, a fuzzy complement can be defined by any strictly increasing
or strictly decreasing functions. If g is a strictly increasing function, then a
complement can be derived from the following formulation:

cla) = g7'(g(1) — g(a))

The function g is called an increasing function generator. Likewise, if f is a
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strictly decreasing function, then the complement function can also be de-
rived.

cla) = f71(f(0) = f(a)

In this case, the function f is called a decreasing function generator.

There is an intrinsic relationship between the increasing generators and the
decreasing generators. Given an increasing generator g, it is possible to obtain
a corresponding decreasing generator f and its pseudoinverse f'.

fla) = g(1) — g(a)
fa) =g '(g(1) — a)

Likewise, given a decreasing generator f, it is possible to obtain a corre-
sponding increasing generator g and its pseudoinverse g~ '.

ga) = f(0) — f(a)
g '@ = f'(f(0) — a)

An interesting property related to the fuzzy complement operation is that
every fuzzy complement has an equilibrium point where the fuzzy comple-
ment is itself.

The wide range of definitions for fuzzy complement allows for different
interpretations or usage of the complement operation. As an example, suppose
the evidence points to the fact that the accused is a murderer with a certainty
of 0.8, i.e., the fuzzy value that the accused is a murderer is 0.8. The audi-
ence’s view that the accused is not a murderer is probably 0.2. However, from
the prosecutor’s viewpoint the certainty that the accused is not a murderer is
only 0.1, while in the defense attorney’s view the certainty that accused is
not a murderer has a fuzzy value of 0.9. All three viewpoints relate to the
accused being NOT a murderer, hence the complement is based on the fact
that the accused IS a murderer with certainty of 0.8.

6.2.2 Fuzzy Intersection

The intersection of two fuzzy sets results in a third fuzzy set that contains
the elements common to the two original sets.

i: [0,1] X [0,1] — [0,1]

The defining conditions for a fuzzy intersection, also called the -norm or
triangular norm, are the boundary conditions obtained from crisp logic. In
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addition, the properties of monotonicity, commutativity, and associativity are
also needed.

Boundary conditions:  i(a,1) = 1

Monotonicity: b=c—iab) = ia,c)
Commutativity: i(a,b) = i(b,a)
Associativity: i(a,i(b,c)) = i(i(a,b),c)

Other optional properties that are nice to have but are not always necessary
are listed below.

Continuity: i is a continuous function
Idempotency: i(a,a) = a
Subidempotency: i(a,a) < a

Strict monotonicity: b < ¢ — i(a,b) < i(a,c)

This definition of a fuzzy intersection operation must degenerate to the
usual understanding of set intersection for crisp logic. So, if a,b € {0,1},
then the boundary condition i(a,1) = a implies

i(0,1) =0
i(1,1) =1

Now the commutativity property i(a,b) = i(b,a) provides another combination:

i(1,0) = i0,1) = 0

Finally, the monotonicity property: b < ¢ — i(a,b) < i(a,c)

0=1-1i0,0 =i0,1) =0

Some examples of fuzzy intersections are given below.
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Standard intersection: i(a,b) = min(a,b)
Drastic intersection: i(ab) =aif b =1
i(ab)y =bifa =1

0 otherwise

Algebraic product intersection: i(a,b) = ab

Bounded difference intersection: i(a,b) = max(0,a + b — 1)
Yeager class intersection: i(a,p) = 1 — min{1,[(1 — a)” +
Schweizer and Sklar: 1 - "y

i(a,b) = [max(0,a” + b» — 1]''»

There are many other examples of fuzzy intersections (see Klir and Yuan).
It can be shown that there is an ordering to many of these fuzzy intersec-
tions:

idi(a’b) = ibd(a’b) = iap(a’b) = l._”»(a,b)

In general, the drastic intersection provides the lower bound for all
intersections and the standard intersection provides the upper bound for all
intersections.

In general, a fuzzy intersection can be obtained from any strictly decreasing
functions. If f is a strictly decreasing function, then the intersection function
can also be derived.

i(a,b) = f~'(f(a) + f(b))

Another method of obtaining a new fuzzy intersection operation is in terms
of an existing fuzzy intersection operation. If g is a strictly increasing and
continuous function between O and 1, then

i(a,b) = g '(i(g(a).8(D)))

The wide range of definitions for the fuzzy intersection operation allows for
different interpretations or usage of the intersection operation. Continuing
from the example of the accused, suppose the accused has been seen in the
crime scene with a fuzzy value of 0.6 and the accused also has a weapon
with a fuzzy value of 0.7. The question is to ascertain the truth value of the
accused using the weapon at the crime scene. The audience’s view that the
accused is a murderer because he was seen in the crime scene AND using
his weapon at the crime scene would most likely be a fuzzy value around
0.42 (algebraic product). The prosecutor’s view that the accused is a murderer
would likely to be a fuzzy value of 0.6 (standard intersection), while the jury’s
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view that the accused is a murderer might have a fuzzy value of 0.3 (bounded
difference). On the other hand, the defense attorney’s view that the accused
is a murderer has a fuzzy value of 0.0 (drastic intersection).

6.2.3 Fuzzy Union

The union of two fuzzy sets results in a third fuzzy set that contains the
elements that may be included in either of the two original sets.

u: [0,1] X [0,1] — [0,1]

As usual, the defining conditions for a fuzzy union, also called the 7-conorm,
are the boundary conditions obtained from crisp logic. In addition, the prop-
erties of monotonicity, commutativity, and associativity are also needed.

Boundary conditions:  u(a,0) = a

Monotonicity: b =c¢— u(a,b) = u(a,c)
Commutativity: u(a,b) = u(b,a)
Associativity: u(a,u(b,c)) = u(u(a,b),c)

Other optional properties that are nice to have but are not always necessary
are listed below.

Continuity: u is a continuous function
Idempotency: u(a,a) = a
Superidempotency:  u(a,a) > a

Strict monotonicity: b < ¢ — u(a,b) < u(a,c)
This definition of a fuzzy union operation must degenerate to the usual un-
derstanding of set union for crisp logic. So, if a,b € {0,1}, then the boundary

condition u(a,0) = a implies

u(0,0) =0
u(1,0) =1

Now the commutativity property u(a,b) = u(b,a) provides another combina-
tion:

u(0,1) = u(1,0) = 1

Finally, the monotonicity property:
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b =c— ulab) = u(a,c)

0=1-u@01) =ull,l) =1
Some examples of fuzzy unions are given below.
Standard union: u(a,b) = max(a,b)
Drastic union: u(a,b) =aif b =0

u(a,b) =bifa =0

u(a,b) = 1 otherwise

Algebraic sum union: u(a,b) =a + b — ab
Bounded sum union: u(a,b) = min(l,a + b)

Sugeno class union: u(a,b) =

Yeager class union: u,(a,b) = min(1,(a* + b")'"™)
Schweizer and Sklar: u(a,b) = 1 — [max(0,(1 — a)”

+ 1=k = D)

Other examples of fuzzy unions are presented in Klir and Bo.
It can be shown that there is an ordering to many of these fuzzy intersec-
tions:

U\‘u(a’b) = uas(a’b) = ubs(a’b) = udu(a’b)

In general, the drastic union provides the upper bound for all unions and
the standard union provides the lower bound for all unions.

In general, a fuzzy union can be obtained from any strictly increasing
functions. If g is a strictly increasing function, then the union function can
also be derived.

u(a,b) = g7 '(g(a) + g(b))

Another method of obtaining a new fuzzy intersection operation is in terms
of an existing fuzzy intersection operation. If g is a strictly increasing and
continuous function between O and 1, then

u(a,b) = g~ '(u(g(a).g(b)))

The wide range of definitions for the fuzzy union operation allows for
different interpretations or usage of the union operation. Continuing from the
example of the accused, suppose the accused has been seen at the crime scene
with a fuzzy value of 0.6 and the murder weapon also belongs to the accused
with a fuzzy value of 0.7. The question is to ascertain the truth value of the
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accused being the murderer. The audience’s view that the accused is involved
in the murder based on the two evidences has a fuzzy value of 0.88 (algebraic
sum). The prosecutor’s view that the accused is involved in the murder is
likely to be a fuzzy value of 1.0 (drastic union). However, the jury’s view
that the accused is a murderer has a fuzzy value of 1.0 (bounded sum), while
the defense attorney’s view that the accused is involved in the murder has a
fuzzy value of 0.7 (standard union).

6.2.4 Duality

A duality property exists in crisp logic regarding the intersection and the
union operation based on the standard definition of a complement operation.
The duality property can be expressed in terms of DeMorgan’s law.

(A N B\ = A\ U B\
(AU B\ = A\ N B\

The same properties also exist for fuzzy operators. DeMorgan’s law can be
extended using fuzzy operators.

i(a,b) = c(u(c(a),c(b))) if ¢ is involutive

u(a,b) = c(i(c(a),c(b))) if c is involutive

However, not all definitions of intersections, union, and complement op-
erations satisfy the above two conditions. The three operations forming a
triple <i, u, ¢> that does satisfy the two conditions above are called a dual
triple. Some common triples are:

<iy, Uy, >

Si°

<i,,, U, C=

ap? as?

<lpgs Upg C>
<idi’ udu’ C,\'>
Other examples of intersection, union, and complement operations are also
possible.
If the intersection, union, and complement operations do form a dual triple,

then it can be shown that the associated operations do satisfy the law of the
excluded middle:

u(a,c(a) = 1,

and the law of contradiction:
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i(a,c(a)) =0

6.2.5 Fuzzy Implication
Another operator often-used in expressing rules in fuzzy systems is the im-
plication operator. A rule often takes the following form:

Implication(A,B) = if A, then B

The if—then rule is sometimes also written as A — B, thus giving rise to the
implication operator. In crisp logic, implication is defined by the following
truth table:

—_—_o O | >
—_ O = O | W

_ O =

If A is not true, there is nothing that can be inferred about B. Hence, regardless
of the value of B the implication is true. If A is true, then B must be true for
the implication to be true.

In crisp logic, the implication operator can be implemented with the ele-
mentary operators: AND, OR, and NOT. Since the realization of an arbitrary
function in combinational logic is not unique, there are a number of ways to
realize the implication operator. Three of these realizations are listed below.

Implication,(a,p) = ~a U b
Implication,(a,b) = max{x€{0,1} | a N x = b)
Implication,(a,b) = ~a U (a N b)

Implication,(a,b) = (~a N ~b) U b

The implication of two fuzzy sets results in a third fuzzy set that conveys
the meaning of the first set implying for the second set.

u: [0,1] X [0,1] — [0,1]

As usual, the defining conditions for a fuzzy implication are the boundary
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conditions obtained from crisp logic. In addition, the properties of monoto-
nicity are also needed.

Boundary conditions:  Implication(a,b) = 1 iff (if and only if) a = b
Monotonicity: b = ¢ — Implication(a,b) < implication(a,c)

b = ¢ — Implication(b,a) = implication(c,a)

Other desirable properties of implications are listed below.

Continuity: i and u are continuous functions
Identity: Implication(a,a) = 1

Dominance of falsity: Implication(0,1) = 1

Dominance of truth: Implication(1,b) = b

Contraposition: Implication(a,b) = implication(c(a),c(b))
Exchange: Implication(a, implication(b,c))

= implication(b, implication(a,c))

Using the above four definitions as a start, a fuzzy implication can be
derived using the fuzzy definitions as a counterpart for the crisp operators.

Implication, (a,b) = u(c(a), b)
Implication,(a,b) = max{x([0,1] | i(a, x) = (b)
Implicationy(a,b) = u(c(a), i((a.b))
Implication,(a,b) = u(i(c(a) c(b)),b)

While all of the four definitions above degenerate into the crisp boundary
conditions, their fuzzy counterparts do not always yield the same values. This
difference gives the user a variety of operators to choose from.

From the first definition of implication, there are many implications that
can be derived using various forms of fuzzy union and fuzzy complement:
Implication,(a,b) = u(c(a), b). These are generally called the S-implications.

Kleene—Dienes implication: ~ Implication(a,b) = max(1 — a,b)

Lukasiewicz implication: Implication(a,b) = min(1,1 — a + b)

From the second definition of implication, there are many implications that



156 FUZZY SYSTEMS

can be derived using various forms of fuzzy union and fuzzy complement:
Implication,(a,b) = max{x€[0,1] | i(a, x) = (b). These are generally called
the R-implications.

Godel implication: Implication(a,b) = sup{x/min(a,x) = (b)
Lukasiewicz implication:  Implication(a,b) = min(1,1 — a + b)
LR implication: Implication, z(a,b) = b if a = 1

Implication,  (a,b) = 1 otherwise

From the third definition of implication, there are many implications that
can be derived using various forms of fuzzy union and fuzzy complement:
implication,(a,b) = u(c(a), i((a,b)). These are generally called the QL-
implications.

Zadeh implication: Implicationy(a,b) = max[l — a,min(a,b)]

Kleene—Dienes implication: ~ Implication(a,b) = max(1 — a,b)
It can be shown that there is an ordering to many of these fuzzy implications:
Implication, z(a,b) = implication (a,b)

In general, implication, ; provides the lower bound for all implications and
the standard implication provides the upper bound for all implications.

In general, a fuzzy implication can be obtained from any strictly increasing
continuous functions. If g is a strictly increasing function, then the implication
function can also be derived.

Implication(a,b) = g~ (g(1) — g(a) + g(b))

6.2.6 Fuzzy Aggregation

The fuzzy intersection and fuzzy union operations can be repeatedly applied
when there are more than two variables. However, the lower and upper bounds
for the intersection and union operations still hold. Note that the intersection
operation produces a value that is between 0 and the minimum value of the
input values. Likewise, the union operation produces a value that is between
the maximum value of the input values and 1. In other words, the intersection
covers the lower range of the possible values while the union covers the upper
range of the possible values. An operation that produces a value in the middle
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range between these two extremes is called an aggregation operation. An
example of an aggregation operation is the averaging operation.
An aggregation operation is an operation that produces a value in the mid-
dle range between the intersection and union operations.
h: [0,1]" — [0,1]

The boundary condition is very general for an aggregation operation.

ho,...,00=0
l, ..., =1

The monotonicity property is
a,=b,— ha,,...,a)=hb,...,b,)

Some examples of an aggregation operation are listed below.

Generalized means: hfa, ...,a)=1[a*+ ...+ a>/n]V
Harmonic mean: h_a,...,a,)=nl/(1/a, + ...

+ 1/a,), a = —1
Arithmetic mean: h(a,,...,a)=(@ +...+a)n a=1

Ordered weighted average

(OWA): hJfa,...,a,)=wa +...+wa

n

6.3 FUZZY NUMBERS

An application of fuzzy concepts is fuzzy numbers. Quite often a measure-
ment is not known precisely, but rather with some amount of uncertainty.
Hence if one speaks of one’s height as 5 ft, then it can be taken as 60 in. in
a crisp sense. However, if one speaks of one’s height as around 5 ft, then it
can be taken as some number around 60 in. or in the vicinity of 60 in. This
is a fuzzy concept and can be considered as a fuzzy 60 in.

6.3.1 Fuzzy Number Representation

A fuzzy number is a fuzzy set that conveys the meaning of a fuzzy value
around the identified crisp number. In other words, a fuzzy 3 is a fuzzy set
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around the number 3. In general, a fuzzy number takes on a trapezoidal
membership format, though this is not a requirement. The membership func-
tion for a fuzzy number is composed of a left side, a central interval (the
core), and the right side. For most applications, a fuzzy number usually has
a finite support and symmetric left and right side as shown in Figure 6.7.

Note that for all the representations above, Figure 6.7(a) shows a crisp 5.
Figure 6.7(b) shows a crisp interval. Note that a crisp number has no width
and has sharp boundaries on both sides. Likewise, a crisp set or interval has
width but also has sharp boundaries. A fuzzy number that is triangular or
trapezoidal in shape has width and unsharp boundaries. Figures 6.7(c)—(e) all
convey the idea of a fuzzy 5. This is evident since all the membership func-
tions are at maximum and are at 1 when the number is 5. The exact shape
of the membership function expresses the idea to be conveyed. If Figure 6.7(c)
is a fuzzy 5 representing the concept of 5, then Figure 6.7(d) also represents
a fuzzy 5 with the meaning of very much 5 and Figure 6.7(e) also represents
a fuzzy 5 with the meaning of around 5.

6.3.2 Fuzzy Number Operation

Like crisp numbers, fuzzy numbers can be added, subtracted, multiplied, and
divided. Other operations are also possible. One approach to deal with fuzzy
numbers comes from the concept of a-cuts. From the principle of decom-
position, any membership function can be decomposed and recovered into a
set of crisp intervals. Fuzzy arithmetic can then be performed by first decom-
posing the membership functions into sets of crisp intervals using «-cuts,
performing the arithmetic on the intervals, and then recovering the member-
ship function of the result by putting the intervals back together.

Arithmetic of fuzzy numbers using a-cuts depends on interval arithmetic.
A summary of the interval arithmetic is well established and is summarized
below.

Addition: [a,b] + [de] = [a + d,b + e]
Subtraction: [a,b] — [de] = [a — e,b — d]
Multiplication:  [a,b]*[d,e] = [min(ad,ae,bd,be),
max(ad,ae,bd,be)]
Division: [a,b]/|d,e] = [min(a/d,ale,b/dble),
max(a/d,alebl/d,ble)]
Using the interval logic formulas, arithmetic of fuzzy numbers can be ac-

complished using the idea of a-cuts. Let OP be a general operator for addi-
tion, subtraction, multiplication, or division, then:
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A(x) A(x)
0 X 0 I X
| 5 5
(a) Crisp 5 (b) Crisp interval
1 1
A(x) A A(x)
0 0 é X
Fuzzy 5 (a) "Very much" fuzzy 5
1
N [\
0

(e) "Somewhat" fuzzy 5

Figure 6.7. Fuzzy numbers.

ope{ +, — %/}
“A OP B) = “A OP “B
AOPB=U,a“AOPB)

As an example, let A(x) and B(x) be defined below.

Ax) = (x — 3) + 1, x€[2,3]
Alx) = 3 — x) + 1, x€[3,4]
B(x) = (x — 5) + 1, x€[4,5]
B(x) = (5§ — x) + 1, x€[5,6]

The «a-cuts for A(x) and B(x) can be described in a closed-form solution.

Hence,

Ux) =2 + ad — o
“Bx) =4+ a6 — «a]
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%A + B)(x) = [6 + 2,10 — ]
Unraveling the equations yield the resultant membership function

A+ B = (x — 8)/2 + 1, x€[6,8]
A+ B = (8 — /2 + 1, x€[8,10]

In a more general setting, the extension principle can be used for any
arbitrary single-variable or multiple-variable functions. Application of the ex-
tension principle for arithmetic operations on fuzzy sets yields the following.

(A + B)(2) = sup,_,,,
(A — B)(z) = sup,_,_, min[A(x),B(y)]
(A * B)(z) = sup,_., min[A(x),B(y)]
(A/B)(z) = sup._,,, min[A(x),B(y)]

min[A(x),B(y)]

In general, the extension principle is simpler and more versatile to apply than
the approach based on interval logic.

Note that while fuzzy numbers can be added, subtracted, multiplied, or
divided similarly to crisp numbers, whenever fuzzy numbers are used, the
fuzziness of a number always increases. Hence, when fuzzy numbers are
involved in an equation, the solution is not as simple as the crisp counterpart.
For example, for crisp numbers, if A + X = B, then X = B — A. However,
the above equations are not applicable for fuzzy numbers because in general,
A+ X=A+ (B — A)# B. Therefore, the solution for the arithmetic problem
can be obtained by unraveling the equations for the interval logic. Let *A =
[“a,, “a,], *B = [*b,, “b,], and “X = [*x,, “x,]. Then the a-cut for the equation
A+ X=Bis

[“a,, ®a,] + [*x;, *x,] = [*by, °b,]
or in other words,
*X = [*b, — “a,, °b, — “a,]
The solution X can now be put together:
X=U,aX
While the formula may seem simple to apply, it is not apparent from the

formula that a solution may not exist. Note that the solution X is constructed
by piecing together the intervals with the respective proper « values. This
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implies that each individual “X must be a valid interval. It is quite possible
that the *X interval does not exist and the upper limit is less than the lower
limit, thus making an invalid interval. This often occurs when the fuzzy num-
ber B is less fuzzy than A.

6.3.3 Fuzzy Ordering

In addition to arithmetic operations, crisp numbers can also be compared in
terms of their position on the number line. This is usually referred to as
ordering. For crisp numbers, the comparison is straightforward, e.g., 3 < 5
and 5 < 7, etc. The idea of fuzzy ordering can also be extended to fuzzy
numbers.

One method of comparing two fuzzy numbers is by means of the minimum
and maximum operations for crisp numbers. The minimum of two crisp num-
bers yields the smaller of the two, while the maximum of two crisp numbers
yields the bigger of the two. The same concept can be extended to fuzzy
numbers by means of the extension principle.

Min(A, B)(2) = SUP._ yinc.yy MIN[AX),B(y)]
MaX(A7 B)(Z) = Supz:max(x,y) mln[A(x)9B(y)]

6.4 FUZZY RELATION

A relation provides a weaker connection between two variables than a func-
tion. In a functional relationship, one variable (x) is an independent variable
and the other (y) is a dependent variable. While more than one independent
variable can take on the same value for the dependent variable, it is not
permissible for an independent variable to take on more than one value for
the dependent variable. Hence, there are many functions that are not inverti-
ble. If y is a function of x, that does not imply that x is a function of y. For
example, there are many independent variables in a sine function that have
the same dependent value, hence the function is not invertible unless the
interval of the dependent variable is limited.

6.4.1 Definition of a Fuzzy Relation

A relation on the other hand provides a connection that is much less restricted
that a function. If x is related to y, then y is related to x. It is also possible
that some values of the variables are related to one another while other values
of the variables are not. In the most general case, a crisp relation is defined
below.
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Y
1 %2 X Y
al0|.5 a
xb| .51 b
cl1|0 [¢
(a) Membership matrix (b) Sagittal diagram
x y RX@Yy) é) 1
a 1 0
a 2 05 0.5 1)
b 1 0.5
b 2 1 G 1
c 1 1 0.5
c 2 0 e
(c) Table (a) Graph

Figure 6.8. A relation defined by a membership matrix.

Rx,...,x)=1if<x,...,x>€ER

R(x;, ..., x,) = 0 otherwise

A relation is commonly defined in one of two ways: a membership matrix or
a sagittal diagram. A membership matrix lists the set values of one variable
on one side and maps the set values of the variable in the other side.

For crisp relations, if there is a relation, then the corresponding matrix
element is 1; otherwise the matrix element is 0. The membership matrix
clearly identifies all possible values of x and y and enumerates which element
in x is related to which element in y. For fuzzy relations, the relation can also
be defined by the membership matrix method, except the element values in
the matrix need not be 0 or 1, but rather between O and 1.

A second method to define a relation is by means of a Sagittal Diagram,
where a line is drawn between the elements of the sets whenever a relation
exists. For crisp relation, a line indicates there is a relation while no line
indicates that no relation exists. For fuzzy relation, the degree or strength of
the relation is indicated in the line. Figure 6.8 shows examples of relations.

6.4.2 Binary Relation

A binary relation R(X, Y) is a relation of two sets: X and Y. Similar to a
function, the domain of a relation shows the maximum Y values of the relation
for the corresponding x values.
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dom R(x) = max, R(x,y)

Likewise, the range of a relation shows the maximum X values of the relation
for the corresponding y values.

range R(y) = max, R(x,y)
The height of a relation is the maximum value in the relation.
H(R) = max, max, R(x,y)
The inverse of a relation is to access the relation from the opposite direction.
R™(y.x) = R(x.y)

In a relation, the inverse is simply the transpose of the membership matrix.

A binary relation on a single set is a relation giving the connection of the
elements in the same set. Three properties are typically used to describe a
fuzzy relation: reflexivity, symmetry, and transitivity. Reflexivity refers to the
property in a relation that an element is related to itself, i.e., the relation of
x with x is itself. Symmetry is a property that the relation is bidirectional,
i.e., if x is related to y, then y is related to x. Transitivity indicates that the
relational property is transferable, i.e., if x is related to y and y is related to
z, then x is related to z.

There are two specific relations that are noteworthy: equivalence and com-
patibility. The equivalence relation shows that the elements of a set are equiv-
alent to one another. This relation is reflexive, symmetric, and transitive.
Clearly, an element is equivalent to itself, hence the relation is reflexive. If
an element x is equivalent to another element y, then the element y is also
equivalent to element x by definition, hence the relation is symmetric. Fur-
thermore, if an element x is equivalent to y and y is equivalent to z, then x is
equivalent to z, hence the relation is also transitive.

For a crisp definition of equivalence, the elements of the membership ma-
trix are either O or 1. For a fuzzy definition of equivalence, two elements are
similar if the relation between the two elements yields a value higher than
some specified degree. This is called a similarity relation. The similarity re-
lation partitions the entire set into a number of sets where all equivalent states
are equivalent to one another within the set.

Another relation that is like the equivalence relation is the compatibility
relation. While the equivalence concept conveys the idea that the two specified
elements are exactly identical to one another, the compatibility concept con-
veys the idea that the two specified elements are close to one another. Hence
the latter is also called a proximity relation or a tolerance relation. The com-
patibility equation is reflexive and symmetric but not transitive. An element
is surely close to itself, hence the relation is reflexive. If an element x is close
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to y, then y must also be close to x, hence the relation is also symmetric.
However, if an element x is not close to y, and another element z is also not
close to y, the relation is not symmetric.

6.4.3 Operations with Relations

Information in a relation can be retrieved and manipulated just like a fuzzy
set. The most common usage is to use the relation to find the value of a
resultant fuzzy set given the value of an initial fuzzy set. This operation is
called the max—min composition.

The problem can be stated as follows. Given a relation P(X,Y) between
X(x) and Y(y) and a fuzzy set X', what is Y’ as suggested by the relation.

Y(y) = X(x)' o P(X,Y)
Y(y)' = max, min [X(x),P(x,y)]

It is clear from the definition that the operation is called the max—min com-
position. In general, the max-min composition can be used to relate two re-
lations. Given two relations P(X,Y) between X and Y and Q(Y,Z) between Y
and Z, what is the relation between X and Z, i.e., find R(X,Z)?

R(x,2) = [P(x.y) 0 Q(¥,2)]
R(x,z) = max, min [P(x,y),0(y,2)]

The max—min composition operation is also known as the standard com-
position. Properties of the standard composition are listed below.

Associativity: [P(x,y) 0 O(¥,2)] 0 R(z,w) = P(x,y) o
[Q(y,2) 0 R(z,w)]

Inverse or reverse

composition: [P(x,y) 0 Q(y,2)]7' = O ' (z,y) o P! (y.x)
NOT commutative: ~ P(x,y) o Q(v,z) # Q(z,y) 0 P(y,x)

Since one of the definitions of the fuzzy intersection operation is the min
operation, the standard max-min composition can immediately be generalized
using the fuzzy intersection instead of the min operation. The resultant op-
eration is called the sup-i composition where the supremum is used instead
of the max operation and the intersection operation used instead of the min
operation.
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[P o' Q](x,2) = sup, i[P(x.y), Q(y,2)]

Clearly, if the intersection operation is chosen to be the min operator, then
P o' Q = P o Q. Properties of the sup-i composition are similar to the standard
composition.

There is another variation to the standard composition based on the im-
plication operator. This is called the inf-w,; operation.

(P o,; O)(x,2) = inf, w[P(x,y),0(y,2)]
It is possible to use different definitions of implication for this operation.
Properties of this operation are listed below.
Commutativity: Po,(Qo,S ={FPoQo,S
Other properties: P! o' (P o,, Q) C Q
RCRo,Q0"o,Q

From the equations above, it can be inferred that the sup-i composition o’
and the inf-w, operation o_; are somewhat inverse to one another.

6.5 EVIDENCE THEORY

In evidence theory, a belief measure is the degree of belief based on available
evidence that a given element belongs to the set A. The basic principle of the
believe measure is that the sum is greater than the parts. When evidences are
put together, the degree of belief can likewise be accumulated. Note that
probability is a special case of a belief measure. While the belief measure
deals with hard evidence, the plausibility measure deals with what can be
implied or inferred from the evidence.

6.5.1 Believability and Plausibility

The basic definition of a belief measure, the degree of belief, Bel(x) — [0,1],
based on the available evidence that a given element of x belongs to set A,
is:

Bel(A\U ... (A,) =3, Bel(A) — 3, Bel(A, N A)
+ .. 4+ (=1 BelAN ... (A)

In other words, the belief measure is superadditive. As an example, for three
sets of evidence,
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Bel(A U B U C) = Bel(A) + Bel(B) + Bel(C) — Bel(A N B)
— BellA N C)— Bel(BN C) + BelAN BN C)

Properties of the belief measure are listed below:

Boundary conditions: Bel(®) = 0
Bel(X) = 1
Monotonicity: Bel(A) = Bel(B)if A C B
Superadditive: Bel(A U B) = Bel(A) + Bel(B) — Bel(A N B)

Continuous from above: Bel(A) + Bel(A\) = 1

For the plausibility measure, the degree of plausibility, Pl(x) — [0,1], based
on the available evidence that a given element of x belongs to set A,is:

A N...NA)=3PIA) - 3, P4 U A

+ ...+ (=" PIA, U...UA)

In other words, the plausibility measure is subadditive. For three sets of ev-
idence,

PIA N BN C) =PlA) + PI(B) + PI(C) — PI(A U B)
- PlAUC)-PIBUC) +PIAUBUC)

Properties of the plausibility measure are listed below:

Boundary conditions: P1(#) = 0
PIX) =1
Subadditive: PI(A N B) = PI(A) + PI(B) — PI(A U B)

Continuous from below: P1(A) + PI(A)) = 1

Similar to the union and intersection operations, there is also a duality
relationship between believability and plausibility.
PI(A) = 1 — Bel(A))
Bel(A) = 1 — PI(A))
The degree of belief is usually derived from the basic probability assign-

ment (BPA), which measures the probability that a set element belongs to the
set. In other words, it is the probability density function for the elements of
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the set. Note that the basic probability assignment is defined on the power
set of x. Since the BPA is a probability measure, the sum of all the BPA’s for
the entire power set must necessarily be summed to 1. The properties of a
BPA are given below.

Boundary conditions: m(@) = 0
3, mA) =1

Note that there is no relation between the BPA of the elements or its inverse.
Hence, m(X) = 1 is not required.

The believability and plausibility measures can be derived directly from
the basic probability assignment.

Bel(A) = Zp5c4 m(B) V AE{power set of X}
PI(A) = Zp5n4.0 m(B) V AE{power set of X}

Likewise, the basic probability assignment can also be obtained from the
believability measure.

m(A) = Zppcq (— D" Bel(B)

In summary, the basic probability assignment, m(A), measures the degree
of evidence or belief that the element in question belongs to set A alone. On
the other hand, the believability measure, Bel(A), is the total evidence or belief
that the element belongs to A and all special subsets of A. The plausibility
measure, PI(A), is the total evidence or belief that the element belongs to A
and subsets, and also the additional evidence or belief associated with sets
that overlap with A.

Since believability measures deal with the hard evidence while the plau-
sibility measures deal with what can be inferred,

PI(A) = Bel(A), V A€{power set of X}

A special case called total ignorance occurs when there is evidence that the
element is in the universal set, but there is no evidence about its location in
any subset of X.

mX)=1and m(A) =0V A +#X

Bel(X) = 1 and Bel(A) =0V A # X

PI®) =0and PLA) = 1 VA # 0§

A believability measure not only describes the degree of belief for the
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elements of a set, it also allows evidence to be combined from different
experts into a cohesive picture. This is called the Dempster rule of combi-
nation:

my 5(A) = (Zpnc-g m(B) my(C))/(1 — K)

where

K = 34009 m(B) my(C)

6.5.2 Uncertainty

In crisp sets, one possible measure of uncertainty is the number of alternatives
available. When there are no alternatives, there is no uncertainty. The more
alternatives there are, the larger the uncertainty. Hartley has proposed a class
of functions that can be used to measure the uncertainty of a nonempty but
finite set.

UA) = ¢ log, |A]
If the set is infinite, then a modified form of the Hartley function is used.
U(A) = log(1 + u(A))

In particular, when ¢ == 1 and b == 2, then U(A) = log, |A| and is called
the Hartley function. The resultant measure is called bits.

Extending the same idea to fuzzy sets, the nonspecificity or imprecision of
a fuzzy set can be measured in terms of the size of alternatives. For finite
sets, the generalized Hartley function is:

h(A)

UA) = (1/h(A)) f log, |“A| da

As an example, consider the two membership functions A,(x) and A,(x), as
shown in Figure 6.9. Note that the core of the two sets is the same, but the
support of A,(x) is much wider than A,(x). Consequently, the nonspecificity
of A,(x), U(A,) is and is much greater than that of A,(x) or U(A,).

6.5.3 Fuzziness

Another uncertainty measure is the fuzziness measure, which is a measure of
a lack of distinction between the set and its complement. The less a set differs
from its complement, the fuzzier it is. This is a measure that makes a dis-
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Ao

(a) U(Ay) > U(A;)

(b) U(Ay) = U(Ay)

Figure 6.9. Nonspecificity of fuzzy sets.

tinction between a crisp set and a fuzzy set. The fuzziness measure can be
defined by the following.

Boundary condition:  f(A) = 0 if A is a crisp set
f(A) is maximum if and only if
(iff) Ax) = 05VxeX
Monotonicity: f(A) = f(B) when A is sharper than B
A(x) = B(x) when B(x) = 0.5
A(x) = B(x) when B(x) = 0.5

One formulation for the fuzziness measure is given below.
fA) =3, (1 - 2A() — 1))

Figure 6.10 shows a number of fuzzy sets and its corresponding fuzziness
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1
Ay (2) f(Ay) =0
0 X
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Ag \\ .
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Figure 6.10. Fuzziness measure of fuzzy sets.

measure. The complement of the fuzzy set is also given to highlight the
comparison with the complement.

As a comparison between nonspecificity and fuzziness, note that a gain in
information always reduces the nonspecificity, but a reduction in fuzziness
does not necessarily imply a gain in information.

6.5.4 Nonspecificity

Hartley’s function has been generalized to provide a measure of nonspecif-
icity. The concept can be further extended for application in evidence theory.
The nonspecificity measure is defined as below:
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N(m) = 3, m(A) log, |A|

The nonspecificity function is a weighted Hartley function of the focal ele-
ments in the body of evidence. When there is no uncertainty in the body of
evidence, then N(m) = 0. On the other hand, when there is total ignorance,
then N(m) = log,|x|. Conflict, Con({x}) is the sum of all evidential claims
that conflict with x. H(m) is the expected value of conflict among all evidential
claims within a given probabilistic body of evidence.

It is of interest to compare the concept of nonspecificity fuzzy sets with
the equivalent for probability theory. In probability theory, the disorderliness
is measured by the Shannon entropy.

H(m) = =3 m(x) log, m(x)

For fuzzy sets, the concept of entropy can be extended, leading to two en-
tropy-like measures, dissonance and confusion, which are defined below.

Dissonance = —%,, m(A) log, PI(A)
Confusion = —3,, m(A) log, Bel(A)

Dissonance is the total value of the conflict with the given evidence. Confu-
sion is the total value of the conflict with the given evidence but does not
scale each particular conflict of m(B) with respect to m(A) according to the
degree of violation in the subsethood. A direct measure of conflict expressing
the individual degree of conflicts is defined as follows.

Conflict (A) = X, m(B) |B — A|/|B]|
An extension of this is called strife and discord.
Strife = —3,, m(A) log, 3, m(B) |A N B|/|A|
Discord = -3, m(A) log, >, m(B) |A N B|/|B|
Discord is the mean value of the conflict with the given evidence. Strife is
the mean value of the conflict with the given evidence but does not scale each

particular conflict of m(B) with respect to m(A) according to the degree of
violation in the subsethood.

6.6 FUZZY LOGIC

The field of expert systems grew out of classical logic. Significant parallelism
can be seen among set theory, Boolean algebra, and proportional logic.
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6.6.1 Multivalued Logic

In Boolean algebra, a variable x can take on only two values: x € {0,1}.
Much research has been done on extending the possible values of x beyond
two values. If x can take on three values, this is called a three-value logic. If
x can take on three or more values, this is called multivalued logic. If x takes
on n values, this is called an n-value logic. In general, the values of x take
on values between 0 and 1.

T,=1{0,1/(n — 1),2/(n —1),...,n —2)/(n — 1),1}

The Boolean operations of complement, union, and intersection can be ex-
tended into an n-valued logic system.

Note that a variable in Boolean algebra takes on only two values: x €
{0,1}. Likewise, a variable in an n-value logic takes on only n values: x €
{0, 1/(n — 1),2/(n —1),...,m— 2)/(n — 1),1}. However, a variable in
a fuzzy system takes on values between 0 and 1: x € [0,1]. A fuzzy system
is therefore sometimes referred to as an infinite value logic system.

6.6.2 Unconditional Fuzzy Propositions

In classical logic, there are two types of propositions: conditional and uncon-
ditional. An unconditional proposition such as “The ball is red”” is composed
of a subject “the ball” and a predicate ““is red.”” On the other hand, a con-
ditional proposition takes on the form “If A then B.” A conditional propo-
sition is simply the implication relation. These propositions can be directly
extended to the fuzzy case. The primary difference is that in classical logic,
the ball is either red or it is not red. However, in the fuzzy case, there are
many degrees of truth regarding the ball being red. Likewise for conditional
propositions, there can be many degrees of truth related to the implication.

For an unconditional proposition, the truth value of the proposition is sim-
ply the degree of participation of the predicate in the set related to the subject.
Hence, if the ball is red, then the truth value of the proportion is simply the
degree of redness.

Proposition: Subject is predicate

Truth(Proposition) = predicate(subject)

For example, if the proposition is “The ball is red,” then the truth value of
the proposition is Red(ball).

If the proposition is further qualified regarding the degree of truth, then
the original truth value must be further mapped by a transformation function
to reflect the specified qualification.
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Proposition: (Subject is predicate) is qualified
Truth(Proposition) = Qualified(predicate(subject))
For example, if the proposition is “The ball is red is very true,” then the truth
value of the proposition is Very(Red(ball)).

If, instead of a single predicate, the subject is related to a set of predicates
through a probability distribution function, the truth of the proposition can
also be obtained.

Proposition: Subject is p, with probability p,
Proposition: Subject is p, with probability p,
Proposition: Subject is p, with probability p,

Truth(Proposition) = 3, predicate,(subject) * p,

It is also possible to have quantitative propositions, i.e., propositions that
relate to quantity information. For example, saying that there are 10 balls in
the basket is a quantitative proposition. For crisp set, the quantity is merely
the cardinality of the set. The same also applies to fuzzy set.

Proposition: There are quantity balls in the basket
Truth(Proposition) = Quantity(|Basket|)
where |.| represents the cardinality of the set. Hence, if the proposition is

“There are about 10 red balls in the basket,” then the truth of the proposition
is About_10(|Red|).

6.6.3 Conditional Fuzzy Propositions

For a conditional proposition, the truth value of the proposition is denoted by
the fuzzy implication of the relation.

Proposition: If x is A, then y is B

A conditional proposition is also commonly known as a rule. The implication
conveyed by the rule yields a relation

R(x,y) = Implication(A(x),B(y))

Based on how much x belongs to A and y belongs to B, the truth value of
the proposition is simply the corresponding value of the relation.
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In classical logic, three primary principles are used to combine propositions
to make new inferences:

Modus ponens: (a\(a = b)) = b
Modus tollens: (b\M\(a = b)) = a\
Hypothetical syllogism:  ((a = b)/\(b = ¢)) = (a = ¢)

The same three principles can directly be extended to fuzzy sets also.

In modus ponens, a rule with an antecedent and a consequent is given.
When a simple unconditional proposition is given, it is matched with ante-
cedent of the rule. If the proposition matches the antecedent, then the rule
fires or is applied and the proposition in the consequent is added to the knowl-
edge base. In crisp logic, the antecedent must match the given unconditional
proposition exactly before the rule can be applied.

Rule: If x is A, then y is B
Fact: xis A
Conclusion: yis B

For fuzzy logic, the modus ponens is extended for approximate matches.
This is called the generalized modus ponens. The given unconditional prop-
osition and the antecedent of the rule do not have to match exactly. Rather,
the degree of the match is the degree that the rule can be applied.

Rule: If xis A, then y is B
Fact: xis A’
Conclusion: yis B’

The conclusion B’ is found by the max—min composition operation.
B' = A’ 0 R(x,y)

In modus tollens, a rule with an antecedent and a consequent is given.
When a simple unconditional proposition is given, the complement of the
proposition is matched with the complement of the consequent of the rule. If
the two complements match, then the rule fires or is applied and the comple-
ment of the antecedent is added to the knowledge base. In crisp logic, the
complement of the consequent must match the complement of the given un-
conditional proposition exactly before the rule can be applied.
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Rule: If x is A, then y is B
Fact: y is B\
Conclusion: x is A\

For fuzzy logic, the modus tollens is extended for approximate matches.
This is called the generalized modus tollens. The given unconditional prop-
osition and the consequent of the rule do not have to match exactly. Rather,
the degree of the match is the degree that the rule can be applied.

Rule: If x is A, then y is B
Fact: yis B’
Conclusion: xis A’

The conclusion A’ is found by the max—min composition operation.
A" = R(x,y) o B’

In hypothetical syllogism, a rule with an antecedent and a consequent is
given. A second rule with another antecedent and consequent is also given.
The proposition in the consequent of the first rule is matched with the ante-
cedent of the second rule. If the two propositions match, then both rules can
be applied and the antecedent of the first rule is matched to the consequent
of the second rule. In crisp logic, the match must be exact before the rules
can be applied.

Rule: If xis A, then y is B
Rule: If yis B, then z is C
Conclusion: If xis A, then z is C

For fuzzy logic, the hypothetical syllogism can also be extended for ap-
proximate matches. This is called the generalized hypothetical syllogism. The
consequent of the first rule does not have to match exactly with the antecedent
of the second rule. Rather, the degree of the match is the degree that the rules
can be applied.

Rule: If xis A, then y is B
Rule: If yis B, then z is C
Conclusion: If xis A, then z is C

The conclusion A’ is found by the max—min composition operation.
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R(x,z) = R(x,y) 0 R(y,z)

6.6.4 Selection of Implication Operator

One of the primary uses of the fuzzy implication operator is to define the
implication relation in rules. Since there are many ways to form an implica-
tion operation, it is crucial to determine which implication definition should
be used and which one should not be used. Since the implication operator is
the central operation used in the generalized modus ponens, generalized mo-
dus tollens, and hypothetical syllogism, it is required that when an implication
operator is used, the three principles must be satisfied. This requires that for
generalized modus ponens:

Rule: If x is A, then y is B
Fact: xis A
Conclusion: yis B

In other words, if the fact matches the antecedent exactly, we require that the
implication operator give the consequent exactly.

B = A o R(x,y)

If the implication operator is to be used for the generalized modus tollens
case, then given the consequent of the rule, it is expected that the antecedent
be obtained exactly.

Rule: If x is A, then y is B
Fact: yis B
Conclusion: xis A
or
A =R(x)y) oB

Similarly, if the implication operator is to be used for the hypothetical
syllogism case, then if the consequent of the first rule matches the antecedent
of the second rule, it is expected that a resultant rule is obtained with the
antecedent from the antecedent of the first rule and the consequent from the
consequent of the second rule.
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Rule: If xis A, then y is B
Rule: If yis B, then z is C
Conclusion: If xis A, then z is C

R(x,z) = R(x,y) 0 R(y,2)

6.6.5 Multiconditional Reasoning

In most expert systems, typically more than a single rule is given. A set of
rules is called a rule set. When a proposition is made, the proposition is
compared to the entire rule set. The result is then compiled form the entire
set of matching rules.

Rules: pi:Ifxis A, then y is B,
p,.Ifxis A, then yis B,
Fact: xis A’

Conclusion:  yis B’

In crisp logic, all consequents from matching rules are added to the knowl-
edge base. When there are a lot of rules, it is easy to have contradicting
results.

In fuzzy logic, since an exact match is not required, almost every rule in
the rule set may be activated, albeit to a different degree. For some rules,
there is a good match between the given proposition and the antecedent. The
influence of these consequents should be weighted more heavily than other
consequents coming from rules with a lesser match between the proposition
and the antecedents. The method is called the method of interpolation. The
first step is to compute the degree of compatibility of the rule based on the
compatibility of the proposition and the antecedent of the rules.

r{(A") = h(A’ N A)) = sup, min(A’(x), A/(x))
where j is the index of the rule. The second step is to compute the compilation

of all the consequents weighted by the degree of compatibility of the corre-
sponding rule.

B'(y) = sup; min(r(A"), B(y))

A graphical interpretation of the method of interpolation is given in Figure
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then

Rule: 2

Given Conclusion V2N

Figure 6.11. Method of interpolation.

6.11. It can be shown that for standard max-min composition, the above
procedure is equivalent to the standard compositional rule of inference

B'(y) = A'(x) 0 R(x,y)
where
R(x,y) = sup; min[A;(x),B/(y)]

The result of the method of interpolation gives a fuzzy set. In many ap-
plications, it is of interest to convert the fuzzy set into a crisp value. This
process is called defuzzification. There are three popular ways to defuzzify a
fuzzy set into a crisp number: the center of area method, the center of maxima
method, and the mean of maxima method.

The center of area method is also called the center of gravity method. The
crisp value is simply the centroid of the resultant membership function.
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dep(A) = (J A(@)zd2) ! (f A(2)dz)
and in the discrete case
dca(A) = (zkzln A(Zk)zk)/(zk=ln A(z))

This is the most common method used, and every part of the membership
function contributes to the final answer. In the second method, the center of
maxima method, the crisp value is the midpoint between the largest and the
smallest values with maximum membership.

dey(A) = (inf Z + sup 2)/2, Z = {z]A(z) = h(A)}
and in the discrete case
dey(A) = [min(z|A(z) = h(A)) + min(z,|A(z) = h(A))]/2

In the third method, the mean of maxima method, the crisp value is com-
puted to be the arithmetic mean of all values with maximum membership. In
the discrete case,

dym(A) = % A(Zk)/|Z|

The advantage of this method is that the resultant crisp value is less affected
by outliers. It is also possible to weight the various contributions in the sum-
mation for dy,,(A).

6.7 SUMMARY

Fuzzy systems provide a more general way to represent concepts, ideas, and
propositions. In fuzzy systems, the distinction between one number and the
next, between one interval and the next, between one concept and the next,
is unsharp, i.e., the transition is not abrupt. Hence, a crisp variable becomes
a special case of a fuzzy variable. By means of the extension principle, most
crisp operations and functions can be directly extended to fuzzy sets. Such is
the case for Boolean algebra and crisp arithmetic.

Another distinct advantage of fuzzy sets is that many of the concepts in
expert systems can also be incorporated in fuzzy systems. Rules in expert
systems can readily be implemented in the implication operator in fuzzy sys-
tems. Hence, knowledge processing with rules is natural in fuzzy systems and
knowledge inference actually reduces into manipulation of the implication
operator.
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NEURAL NETWORKS

7.1 INTRODUCTION

Many complex systems are built from simple foundational elements. The field
of Boolean algebra came into existence due to the selection of simple ele-
ments that can only take on two values: 0 and 1. These elements are combined
by three basic operations: AND, OR, and NOT. From these simple elements
and operations, complex combinational circuits and sequential circuits can be
constructed, eventually culminating in today’s computers. Mathematicians
also have long worked with set theory, an extension where a set may consists
of more than 0 and 1 values. The Boolean operations AND, OR, and NOT
have been extended for set theory to UNION, INTERSECTION, and COM-
PLEMENT. More recently, the concept of fuzzy logic has been introduced
by Zadeh. In fuzzy logic, the participation of an element’s membership in a
set is not binary, that is, none or all, but rather in degrees between none and
all.

In the field of signal processing, many modeling techniques are based on
a simple linear model: the linear combiner, where the output is a linear com-
bination of the weighted inputs. Much study has been devoted to finding the
best techniques for estimating the parameters of a linear model. Statistical
techniques have long been developed for linear regression that is a form of a
linear combiner. Deterministic signal-processing techniques for linear models
have been well developed in recent decades. Adaptive signal-processing tech-
niques provide a means to obtain model parameters iteratively, thus simpli-
fying the application of many computationally intensive approaches.

The original motivation for studying neural networks stems from the desire
to perform with machines complex and intelligent tasks that only the human
brain is now capable of. It is commonly accepted that while the response time
of a nerve cell is on the order of milliseconds, the collective intelligence of
billions of billions of nerve cells in the human brain is staggering. A human
brain is able to recall images and events that occurred decades ago and can
recognize a single face out of the millions of faces and images seen before.

180
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Figure 7.1. A neurode.

Yet the study of anatomy has shown that on the surface the operation of a
single brain cell is extremely limited. It is indeed intriguing to see that the
totality of these simple nerve cells can achieve the wonders of modern tech-
nology. Hence, there is tremendous interest by researchers in recent decades
in studying the biological neural networks in an attempt to construct artificial
neural networks from simple artificial neurons that would equally achieve
what two and a half pounds of a typical human brain can attain.

7.1.1 Definition of a Neurode

A biological nerve cell is composed of a cell body. A large number of tree-
like incoming branches called dendrites collect sensory inputs to the cell body.
The dendrites make “‘contact’ with other nerve cells through a synapse. When
a nerve cell is put into an active state, it fires, that is, an electrical impulse
is generated and sent along a conduit called an axon. When the electrical
impulse passes through a synapse, a number of chemical reactions are evoked,
causing specific chemicals to be released and collected by the dendrites. When
enough sensory inputs have been collected by the dendrites of the receiving
nerve cell, it in turn fires. The efficacy of the electrical stimulation from an
impulse on an axon passing through a synapse is variable dependent on a
large number of parameters, such as the availability of ions and the general
health of the body.

An artificial neuron or neurode is a simple processing element patterned
after the biological model. A neurode, as shown in Figure 7.1, is composed
of a number of inputs and a single output. Each synapse of a biological neuron
represents an input of the neurode. The efficacy of the synaptic junction is
represented by a multiplicative weight associated with that neurode input. The
coincidence of the synaptic stimulation is modeled by a simple summation.
The activation of the neurode is defined by an activation of the weighted sum
of the input. In equation format, the output, o, of a neurode can be expressed
as:
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o = f(net)

net =3._Nw,x

where x; are the inputs, w; are the weights associated with the inputs, and f
is a nonlinear function. There are a total of N inputs. The same equation can
also be expressed in matrix form:

0 = FWX)

where W = [w,, wy, ..., wy] and X = [1, x,, . . ., x,]. Note that the constant
threshold has been defined as x, and is set to 1.

The above definition immediately highlights the similarity between a neu-
rode and a linear combiner. In fact, the net parameter is precisely a linear
combiner. The primary difference between a neurode and a linear combiner
is that for a neurode, there is an additional nonlinear transformation, f, fol-
lowing the linear combiner. In most cases, this transformation or activation
function is taken to be nonlinear. In the extreme case when the activation is
taken as a linear function, and more specifically a linear ramp function, then
a neurode is the same as a linear combiner. In other words, a neurode is a
linear combiner and more.

7.1.2 Variations of a Neurode

There are a number of variations on the format of a neurode. Most of the
variations stem from the different definitions of the input range for x and in
the choice of the activation functions f. If the x € {0,1} or x € {—1,1}, then
the input is discrete. If x € {0,1}, then the input is called unipolar. If x €
{—1,1}, then the input is bipolar. If x € ®!, then the input is continuous. The
weights of the neurode are usually represented as real numbers. If the acti-
vation function produces only discrete values due to a threshold function, the
output is said to be discrete. Most other activation functions produce contin-
uous outputs. The activation can be a simple linear function, though most of
the time the activation function is taken to be a nonlinear function. Following
are a number of commonly used activation functions:

Discrete output

Unipolar outputs
Threshold function (or hardlimiter or heaviside function)
Stochastic function

Bipolar outputs
Sign(net)
Stochastic function
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Continuous output
Unipolar outputs
Linear function
Piecewise function
Sigmoidal function
Bipolar outputs
Signum function
Linear function
Piecewise function
Hyperbolic tangent function

The use of different activation functions produces different results. While
there have been reports of special activation functions with special character-
istics, e.g., periodic, most activation functions are monotonically increasing.
The hyperbolic tangent function is of particular interest because the steepness
of the curve can be adjusted with different values of the A parameter. When
A increases, the transition becomes steep. It is worth noting that when A
approaches infinity, the hyperbolic tangent function approaches the sign func-
tion. The same observation can be made about to the sigmoidal function. As
the A parameter of the sigmoidal function approaches infinity, the sigmoidal
function approaches the hardlimiter function.

7.2 SINGLE NEURODE

7.2.1 The McCulloch-Pitts Neurode

One of the early studies of the behavior of a neurode is the McCulloch—Pitts
neurode. The input is discrete x € {0,1} and the output is also discrete 0 €
{0,1}. The activation function is a simple threshold function:

lifnet=0

o

Oifnet <O

o

where net = W”X. Note that a nonzero threshold is automatically accounted
for as w, in the above formulation. Figure 7.2 shows a McCulloch-Pitts
neurode.

7.2.2 McCulloch-Pitts Neurodes as Boolean Components

There are many uses for McCulloch—Pitts neurodes. One notable observation
is that one or more neurodes can be arranged to function as simple Boolean
elements: an AND, OR, or NOT gate. For example, if a McCulloch-Pitts
neurode takes on a single input, and let the weights W = [—-1.001,1], then
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Xo+€{0, 1} w; = =1 0¢{0, 1}
Figure 7.2. McCulloch—Pitts neurode.

the neurode functions as a NOT gate. However, given a two-input
McCulloch—Pitts neurode, if W = [0.001,1,1], then the neurode functions as
an OR gate. If W = [1,1,1], then the neurode functions as an AND gate. This
implies that all combinational circuits composed of AND, OR, and NOT
components can be directly replaced by McCulloch—Pitts neurodes, and hence
a neural network.

Using the basic principle of a McCulloch—Pitts neurode, more complex
and useful structures can be built. For example, McCulloch—Pitts neurodes
can be connected to produce an analog-digital converter using the successive
comparison approach [Zurada]. The single input x is a continuous parameter
between 0 and 1. The output o0, to o, represents four binary bits. Each of the
binary bits is produced by a single McColloch—Pitts neurode. The first neu-
rode compares with half of the dynamic range and reports whether the input
x is above or below the half way mark. This determines the most significant
bit. If this bit is 1, then half of the dynamic range is subtracted from the
input, otherwise the input is left alone. The comparison continues in like
manner with the next significant bit until the desired resolution is reached.

7.2.3 Single Neurode as Binary Classifier

A McCulloch-Pitts neurode can also be used as a binary classifier that sep-
arates the input into two classes. This is done by examining or unraveling the
equation for the output. Assume that the neurode has two inputs x; and x,.
Then the output can be expressed as:
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net = w, + wx; + wyx,
o= 1ifnet =0

o=0ifnet <O

Clearly, the output separates the entire input space into two classes repre-
sented by o = 1 and o = 0. The decision boundary is the hyperline that
separates the input space into these two classes. The equation of this hyperline
is given by:

wo + wix; + wox, =0

The input space on one side of the hyperline belongs to one class, while the
input space on the other side belongs to the other class. Hence a single neu-
rode is a binary classifier.

Given two clusters of raw data, it is of interest to determine the parameters
of the binary classifier, i.e., determine W = [w,, w,, w,]. If the locations of
the clusters are known, then the hyperline can be determined immediately by
realizing that the equation of a line can also be written using the segment-
bisector form:

(@ = b)x + (1/2)(|lal* — [ = 0

where a and b are the locations of the clusters and ||| represents the Euclidean
norm of the enclosed vector. Comparing the segment-bisector form with the
equation of the hyperline, it is evident that:

wo = (172)(llal* = [1B[P*)

w, w,] = (a — b)"

The same technique can be derived using the principle of minimum distance,
hence the above equation is also called the minimum-distance classifier. If
the locations of the two clusters are not known and only the original data
points are given, then an iterative technique can be applied to determine the
weights of the neurode.

A special case of the general binary classifier is the Bayesian classifier,
where the decision boundary is drawn according to the maximum likelihood
function. Assume that the elements of the two classes have a Gaussian dis-
tribution with different means (w, and w,). Let C be the covariance matrix of
the combined distribution. Then the log-likelihood function is the log of the
likelihood ratio.
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A(x) = log f, — log f,

If the classes are assumed to behave like a Gaussian distribution, the log-
likelihood function can be simplified to become:

A = (1 = )" € x + (2" €' iy = " C71 o)

The above form is very similar to the minimum-distance classifier. In fact,
the form can directly be mapped to the neurode equation. Define

W= (u — ) C!
T=1/2)(p," C" oy = " C1 opy)

Then:
Ax)=Wx+T

As usual, the bias can also be wrapped as one of the weights and an aug-
mented form for a neurode can immediately obtained:

Alx) = WX’

where W' = [T W] and X’ = [1 x]”. So a McCulloch—Pitts neurode is also a
Bayesian classifier.

7.2.4 Single-Neurode Perceptron

In general, the weights associated with a neurode with an arbitrarily chosen
activation function can be determined, albeit iteratively. In some literature, a
neurode is also called a perceptron. A single discrete perceptron can be trained
to produce a particular desired output in response to a particular input. Given
a set of input—output pairs (X,d) where X € ®" and d € {0,1}, the goal is to
determine the weights W such that the predicted output o is the same as the
desired output d. The problem can be solved iteratively by minimizing the
total prediction error:

E=3._"(1/2)d — oy

Starting from random initial weights, each weight can be updated by the
method of gradient descent.
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Aw = (1/2)n(d; — 0)y;

The adaptation equation is repeated applied for all input data points until the
error is below the acceptable threshold.

The same procedure can also be applied to a continuous perceptron, i.e.,
a perceptron whose output is a real number. The problem can be restated as
follows. Given a set of input—output pairs (X,d) where X € ®" and d € X,
the goal is to determine the weights W such that the predicted output o is the
same as the desired output d. The problem can be solved iteratively by min-
imizing the total prediction error:

E =73, "1/2)(d, — 0)?

Starting from random initial weights, each weight can be updated by the
method of gradient descent.

Aw = (1/2)n(d;, — 0)f'(net)y,

net = WX

The factor f'(net) is the derivative of the activation function. Note that the
adaptation equation includes this additional term because of the relationship
between the neurode output and the activation function. The adaptation equa-
tion is repeated applied for all input data points until the error is below the
acceptable threshold.

7.3 SINGLE-LAYER FEEDFORWARD NETWORK

7.3.1 Multicategory SLP

A single neurode or perceptron can function only as a dichotomizer parti-
tioning the input space into two classes. Hence more than one perceptron is
needed when there are more than two classes. This is called a multicategory
single-layer perceptron (SLP). Putting together more than one perceptron re-
sults in a single-layer feedforward network, as shown in Figure 7.3. Since the
output of each perceptron is independent of the others, the training procedures
for a single discrete or continuous perceptron can be readily extended to the
single-layer feedforward case.

7.3.2 Associative Memory

Looking from a broader perspective, a single-layer perceptron provides a
transformation from a multidimensional input to a multidimensional output.
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fk > Ok

Oy = f(nety = i§1XiWi—Tk)

Figure 7.3. A single-layer perceptron.

In other words, a single-layer perceptron provides a mapping from input to
output such that f: R¥Y—®M, where N is the input dimension and M is the
output dimension. This is commonly called an associative memory. In equa-
tion form, an associative memory can be described as follows:

0 = f(W'X)

where the dimension of the input X is N, the dimension of the output O is
M, and the dimension of the weight matrix W is N by M. Note that the
activation f(.) is applied to every element of the output array.

A linear associator is obtained when the activation function is taken to be
a ramp function, i.e., f(z) = z. In this case, the output is simply O = WX,
i.e., the output is a linear combination of the input, hence the name. A linear
associator is often used to map the input space to the output space. Given a
set of input—output pairs (X;, D,),_,* where K is the number of input—output
pairs, X, represents the ith pair of the given input vector, and D, represents
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the corresponding output vector, the problem is to determine the weight ma-
trix Wy, such that the output of the linear associator is the same as the
desired output.

7.3.3 Correlation Matrix Memory

Hebbian learning (also called correlation matrix memory) is an approach pro-
posed by Hebb for determining the weights of a linear associator based on
the principle of classical conditioning. In classical conditioning, an uncondi-
tioned stimulus (food) causes an unconditioned response (salivation) in a sys-
tem (an animal). A conditioned stimulus (bell) originally causes no specific
response. When the unconditioned stimulus and the conditioned stimulus are
paired together, an association is made in the system such that after awhile
the conditioned stimulus also elicits a conditioned response similar to the
unconditioned response. Hebb postulated that the unconditioned response
(neuronal output) causes an association (increases weights) to be formed with
the input (unconditioned stimulus AND conditioned stimulus that was pre-
sented simultaneously). In other words, the excited output of a neurode
strengthens the associated weights of the corresponding excited output. Math-
ematically speaking, this association can be written as the outer product of
the input and output vector: W = DX”. The correlation matrix memory can
be summarized as follows:

Given (X,, D,
One-step training: W = 3X,_ X DX”
One-step recall: 0 =WX
Hebbian learning provides a simple way to determine the weights. However

it is of interest to find out how accurate is the prediction. The output O can
be computed directly from the above equations.

o

WX = 3,_ K DX'X

D(S,_ % X7X)

where the term in parentheses is simply a scalar. Clearly, the ability for perfect
recall depends on the 3, X XX term. If this term yields the Kroneck delta,
d;» then the correct desired output vector D is fully recovered. If not, a re-
sidual results. In other words, the input vector X must be orthonormal. If X
is orthogonal but is not of unit length, the output will be scaled. The corre-
lation matrix approach is simple to apply, but perfect recall dictates that the
input vectors must be orthonormal.
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7.3.4 Pseudoinverse Memory

Another way to look at the problem is from the numerical analysis perspec-
tive. All the supplied input—output pairs can be written as a system of linear
equations:

D, = W'X,

There are K X M equations represented by the above matrix equations and
N X M unknowns in the weight matrix. As long as K is larger than N, we
have an overdetermined system of linear equations. In most cases, the number
of given patterns is usually much greater than the dimension of the input
vector. The application of the least-means-squares approach leads to the pseu-
doinverse solution of the above equation. Hence this is called the pseudoin-
verse approach. For this approach, define X as the input matrix and D as the
desired output matrix. X and D are now in matrix form containing all the
given data: X € @M% and D € {M*K,

Given (X, D)
One-step training: W = D(X"X)"'X"
One-step recall: 0 =W'X
The pseudoinverse approach is also a single-step training procedure. While

the approach seeks to minimize the total mean-square error, it does not allow
the ability to fine tune the derived weight matrix.

7.3.5 Widrow-Hoff Approach

While the pseudoinverse approach is based on the mean-square-error princi-
ple, another approach, commonly known as the Widrow—Hoff equations, is
based on the least-expected-error principle. Define the autocorrelation matrix
R, and the crosscorrelation vector r,, as below:

R, = E[XX']

R, = E[XD]
where E[.] represents the expectation operator. By minimizing the expected
square error, an expression for the weights can be found. The solution is
commonly known as the Widrow—Hoff equation.

— -1
W= Rxx Tva

In summary,
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Given (X, D)
One-step training: W =R _~'r,

One-step recall: 0 =W'X

This approach is attractive because the weight matrix can be obtained in
one step, similar to some of the other approaches discussed so far. Statistically
speaking, the weight matrix thus obtained is optimal.

7.3.6 Least-Mean-Squares Approach

When the dimension of the input and output vectors become large, the di-
mension of the weight matrix also becomes corresponding large. Because of
the matrix inversion operation, it becomes impractical to apply the Widrow—
Hoff approach. Widrow has also developed an iterative method to adaptively
determine the weight matrix using the principle of steepest descent. Instead
of using the expected error, the algorithm uses the instantaneous error. Define
the cost function to be the following:

&W) = (1/2) (D, = W0

The weights can be determined by adjusting the weights in the direction
of the negative gradient of the cost function.

Given (X, D)

Initialization: W, = random
Multistep training: AW, = nX,&(W)T
One-step recall: 0 =W'X

Note that while the training is multistep (iterative), the recall is still single-
step. Widrow has shown that the LMS algorithm asymptotically converges to
the Widrow—Hoff solution, i.e., the optimal solution. The LMS algorithm is
attractive because it is simple to implement and is iterative. In some neural
network literature, this approach is also known as the delta rule.

7.3.7 Adaptive Correlation Matrix Memory

Previously, it has been shown that the correlation matrix memory approach
is a single-step training, single-step recall method and hence does not allow
for fine tuning. This approach can be modified to so that the weights are
adaptively obtained. The new approach is called the adaptive correlation ma-
trix approach. The initial weights are set to zero at the beginning. Subsequent
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presentation of the input sample points causes the weights to settle adaptively
on the best value for predicting the output.

Given (X, D)

One-step initialization: W, = 0
Multistep training AW, = qxd”
One-step recall: 0 =W'X

This adaptive modification provides the ability for the algorithm to fine tune
and obtain the best values for the weights according to the principle of Heb-
bian learning.

7.3.8 Error-Correcting Pseudoinverse Method

The same approach can also be applied to the pseudoinverse approach. Pre-
viously, it has been shown that the Correlation matrix memory approach is a
single-step training, single-step recall method and hence does not allow for
fine tuning. This approach has been further modified to allow fine tuning by
adding an adaptive stage at the end. The new approach is called the error-
correcting (or iterative) correlation matrix approach. After the initial weights
are determined according to the correlation matrix approach, the weight ma-
trix is further refined by iteratively correcting the parameters.

Given (X, D)

One-step initialization: W, = D(X"X)"'X”
Multistep training: AW, = nX,(0, — W'X)"
One-step recall: 0 =W'X

The error-correcting pseudoinverse matrix approach allows the user a way
to fine tune the weights so that the prediction can more closely approach the
desired values.

7.4 SELF-ORGANIZING NETWORKS

In many practical applications, it is not unusual for the dimension of the input
space to be large. Some parameters may be significant, while others may not.
It is always of interest to determine which parameters play a more significant
role than others in the input-output relationship. It is further of interest to find
out if the given sample points can be modeled by a smaller number of par-
ameters. In other words, the original space is called the data space and may
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be of high dimension composed of all the input parameters. We would like
to find a mapping that would transform the sample points from the data space
to the feature space. The feature space contains a small number of parameters,
yet still contains all the essential characteristics originally contained in the
data space. This is called data reduction.

Classification can be considered as data reduction. The original sample
points in the data space are mapped into the feature space composed of the
different classes. Regardless of the input dimension, the feature space is
merely the class of the input space. The input space has been partitioned into
distinct regions where each region represents one class. Specifying a data
point to be in a particular class means that the data point possesses all the
inherent characteristics related to that class as indicated by the centroid of
the class. Deviations to the centroid are considered to be random perturbations
and insignificant.

Modeling can also be thought of as data reduction. Given a set of sample
points, the original data space is transformed into a set of parameters related
to the underlying model. The parameters of the model summarize the char-
acteristics of the underlying model dynamics. This approach is generally
called parametric because, based on the specified functional form, the given
sample points are modeled by specific values of the model parameters. In
other words, the feature space is the collection of parameters. Parametric
modeling has been widely used in many applications. The caveat in para-
metric modeling is that the specified functional form adequately describes the
underlying model characteristics. For example, one can fit a straight line to
data derived from a quadratic function. Likewise, the same data can also be
fitted to a cubic. In general, the underlying model is unknown. The deter-
mination of the best model is a separate and nontrivial task in itself.

A more general approach than parametric modeling is nonparametric mod-
eling. In the later case, no assumptions have been made regarding the func-
tional form. An example of nonparametric modeling is the principal
components approach.

7.4.1 Principal Components

Given a set of input sample points x; € RV, the idea is to find a small set of
exemplars that can be used to describe collectively most of the sample points.
There are many numerical methods that can be used for this purpose. One
such technique is the eigenvalue/eigenvector analysis. Define the input data
matrix as X = [x, X,, . . ., Xz] where x; € ®". The dimension of X is therefore
N X K. Using the orthogonality transformation, the input matrix X can be
decomposed into three matrices.

XU = UA

where U is an orthogonal matrix U~' = U7 and A is a diagonal matrix. The
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decomposition procedure is well understood and can be found in many nu-
merical analysis texts.

The diagonal elements of the A matrix are called eigenvalues. Hence, A =
diag(A;, Ay, . . . Ag). It is customary to arrange the eigenvalues in decreasing
order A, > A, > ... A, The eigenvalues in the A matrix are related to the
variance or the “‘power” of the input data. The columns in the original U
matrix are called eigenvectors: U = [u,, u,, . . . u,] where u, € ®V. Eigen-
vectors are unit vectors that identify the basic characteristics of the input data
in a nonparametric format. For this reason, eigenvectors are also called basis
vectors.

From the U and A matrixes, the original matrix X can be fully recovered,
rearranging the eigenvalue equation:

X = UAUT
or written in terms of the eigenvalues and their corresponding eigenvectors:
X =35 Nuu”

In the above formulation, the eigenvectors form the basis of the feature space
and the eigenvalues show the weightings of the individual contributions of
the eigenvectors. Since the eigenvectors are unit vectors, their contribution is
completely normalized. However, the relative importance of the eigenvectors
is indicated by the corresponding eigenvalues. The larger the eigenvalue, the
more the associated eigenvector contributes to explaining the variance of the
input data. On the other hand, if the eigenvalue is small, then the correspond-
ing eigenvector most likely models the random perturbations that exist in the
input data.

Data reduction is achieved by realizing that not all the eigenvectors are
needed in reconstructing the input data matrix. Only the significant eigenvec-
tors with large eigenvalues are used. Define P as the number of significant
eigenvalues to be used. Then the original data matrix can be recovered as
follows:

X=3_" A uu”

The significant eigenvalues and their associated eigenvector is called prin-
cipal components. Since each eigenvector is orthogonal to all the others, the
principal components are independent of one another. Hence the principal
components show the degree of independent processes that exist in the un-
derlying model dynamics.

7.4.2 Clustering by Hebbian Learning

Suppose a set of input sample points is given. Note that no output values are
given or needed at this point. It is of interest to define a model that would
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adequately describe the input data space. This is in essence the clustering
problem. Without explicitly indicating which sample point belongs to which
class, the problem at hand is to find out the number of clusters and the
corresponding centroid locations of the clusters.

In the study of linear associators, the method of adaptive Hebbian learning
has been presented as an effective way to determine the weights in an iterative
manner. Consider a single neurode with input vector x,, scalar output y, and
time index t. Repeating the update equation for the weight vector W, at time
index t for the adaptive correlational matrix memory approach for a single
neurode, it is reasoned that the same process can be used to form clusters.
This is done by replacing the desired output with the actual neurode output.

Wi =W, + nx,y"

Beginning with initial random weights, the update equations iteratively en-
force those weights that produce an output.

One major problem with the above update equation is that the weights can
grow unchecked and unbounded. The more the input patterns are presented,
the more the outer product adds to the weights. For this reason, this approach
has not been in widespread use.

7.4.3 Clustering by Oja’s Normalization

In an effort to curb the unboundedness of the weights, Oja proposed to nor-
malize the weights after each weight update. In other words, the relative
importance of each weight is redistributed among all the weights.

W = (W, + mx,y)/sqrt(Z(W, + nx,y)%)

The summation term gives the power (squared value) of all the weights. The
weights are therefore normalized by the square root of the total weight power.
This in essence causes the weights to be bounded in magnitude.

A first-order approximation of Oja’s normalization is obtained by replacing
the square root operation with the first-order series expression for a square
root.

Wt+1 = Wr + ”'7)’(xt - th) + 0(7]2)

Notice that in the above equation there is positive feedback to increase the
weights for self-amplification. However, at the same time, there is also neg-
ative feedback to control the growth of the weights.

Oja’s extension to the weight update equation results in some very inter-
esting properties. Taking expectations on both sides of the equation, conver-
gence is obtained when the update is zero, i.e., lim(t — ») E[W, ] = E[W,].
When convergence condition is reached, it can be shown that W, converges
to the largest eigenvector of data-correlation matrix.
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lim,_., E[W,] = u,

where u, is the largest eigenvector of R = E[XXT]. This implies that repeated
presentation to a neural network that updates according to Oja’s extension
eventually causes the weights to converge automatically to the largest eigen-
vector.

The other eigenvector can be obtained by Hotelling’s deflation. By deleting
the contribution of the most significant eigenvector, a new data set can be
formed so that the same technique can again be applied, thus causing the
algorithm to converge subsequently to the next-largest eigenvector. If the first
neurode has already converged to the largest eigenvector, then based on the
Hotelling’s deflation principle, a new data set can be formed by subtracting
the effects of this eigenvector. In summary, the generalized Hebbian algorithm
(GHA) is given below.

Neurode output: y =W,
Weight update: Wi =W, + npx, —yW)
For the first neurode: X' =x

[A—

For the second neurode: x' = x — w,y,

For the third neurode: X'=x—wy — w,

Note that for the first neurode, the input is the same as the original data input
x, = x. For the second neurode, the modified input is

Xy =X T W

Yo = WXy = Wo(x — wyy))

= Wk T W Wy,

The first term in the above expression is simply the weights of the second
neurode applied to the original input. The second term in the above expression
is an added term stemming from the output (y,) of the first neurode. This can
be implemented by a direct lateral connection from the output of the first
neurode to the input of the second neurode. Likewise for the third neurode,
rearranging the modified input of the third neurode means there is a lateral
connection from the output of the first and second neurode to the input of the
third neurode. Architecturally speaking, this is shown in Figure 7.4.

Oja’s extension shows that a two-layer network can be used to classify the
input data space automatically into distinct clusters merely by presentation of
the input patterns themselves. This is done by the addition of lateral connec-
tions at the output layer. In addition, for the algorithm to work, the conver-
gence of the second and subsequent neurodes should be withheld until the
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Figure 7.4. A self-organizing PCA network.

first neurode has converged. Then the weights for the second neurode are
allowed to converge, and likewise for the subsequent neurodes in order.

7.44 Competitive Learning Network

The architecture for a competitive learning network, shown in Figure 7.5, is
similar to that of an SLP. There are no explicit connections between the
neurodes at the output layer. However, the output of all the neurodes at the
output layer must be considered together during the weight update process.
The operation of a competitive learning network is essentially the same as
that of an SLP, with one important distinction: not all the weights are allowed
to be updated. When a pattern is presented to the network, all output neurodes
examine and process the input pattern. Each output neurode generates an
output. All neurode outputs are then compared and a winner is selected based
on the largest neurode output. The winning neurode is then allowed to update
its weights, while the weights of all other neurodes remain the same. Hence
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Figure 7.5. A competitive learning network.

this is called a winner-takes-all strategy. Only the winning neurode has the
privilege of being updated. The competitive learning network is also called a
Kohonen network.

Given the input sample points x, i = 1, ..., p where each x, € ®V. The
neurode output is as usual a nonlinear transformation of the linear combiner,

y = f[Wx].

Initial weights:  w° = random
Training: Select w,, such that || x — w,, || = || x — w, ||
m is the winning neurode
Update weights: w,'*! = w,’ + a(x — w,) for the winning neurode

w/tt = w! i # m for other neurodes

The update equation causes the weight of the winning neurode to be more
and more like the input pattern. If more than one sample point is selected by
the neurode, the weights of the neurode tend to settle on the centroid of the
sample points. In other words, the weights of the competitive networks yield
the centroid location of the clusters. Each active neurode depicts a cluster and
serves to represent the location of the associated cluster.

In summary, self-organizing networks such as PCA networks or competi-
tive learning networks are SLPs with special training procedures. Because of
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Figure 7.6. A multiple-layer perceptron.

the special process involved, these networks have been shown to be useful in
automatically discovering clusters in the data space.

7.5 MULTIPLE-LAYER FEEDFORWARD NETWORK

7.5.1 Multiple-Layer Perceptron

While a single-layer feedforward network is able to map a multidimensional
input space to a multidimensional output space, each output is basically in-
dependent of the others. A multiple-layer perceptron (MLP) is formed by
putting more than one layer together. An MLP is particularly attractive be-
cause the additional layers allow the results of one layer to be further pro-
cessed, arranged, and put together to make a complex system, as shown in
Figure 7.6.

Recall that a single neurode basically creates a hyperline in the input space.
An SLP therefore is equivalent to a set of hyperlines placed in the same input
space working in parallel, each hyperline for a corresponding output neurode.
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Figure 7.7. An MLP for the XOR function.

In order to correlate the different hyperlines together, thus creating multiple
intersecting regions, additional layers are required. The first layer creates a
set of hyperlines, and the second layer relates the hyperlines together to form
a contiguous hyperregions. Since there can be any number of hyperlines, it
is therefore possible to approximate the shape of any hyperregions in a piece-
wise manner.

While two layers are needed to join separate hyperlines together to form
a hyperregion, another layer is needed to join multiple disparate hyperregions
together into a single class. The third layer allows multiple hyperregions dis-
tributed anywhere in the input space to be related together. Hence it is com-
monly accepted that a three-layer feedforward neural network is capable of
realizing any function for this reason.

7.5.2 XOR Example

As an example, consider a two-layer network for the exclusive-OR (XOR)
function. An XOR function has two inputs, x and y, and a single output. The
inputs and the outputs are discrete, taking on values of 0 and 1. When the
inputs are distinct, the output is 1. When the input is the same, the output
is 0. Figure 7.7 presents an MLP for the XOR function.

The XOR function can be solved using two McCulloch—Pitts neurodes in
the first layer and a single McCulloch—Pitts neurode in the output. There are
two input neurodes because there are two inputs. A single-output neurode
suffices in the second layer since there is only a single-output variable. Each
of the two neurodes in the first layer produces a line in the input space as
shown. Note that the positive decision region for the first neurode is to the
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left of the line while that for the second neurode is to the right of the line.
So doing means that the input for (x,y) = (0,0) and (1,1) are left in the same
region, hence producing the same output results.

7.5.3 Back-Error Propagation

While the MLP has the potential to approximate any function, the network
can only be practically used if there exists a way to determine the weights
that would approximate the desired function. Given a set of input—output
pairs, it is highly desirable to be able to determine the weights directly from
the given data. This problem has been solved using the generalized delta rule.
The use of this rule has greatly enhanced the usage of neural networks, and
there are many reports in the literature of the rule being applied successfully
to solve many practical problems.

The basic idea of training a multiple-layer feedforward neural network is
to generalize the delta rule for each weight. The delta rule requires the com-
putation of the derivative of the error with respect to the weight of interest.
This can be done by repeatedly applying the chain rule. In some literature,
the generalized delta rule is also known as the back-error propagation method.

Given a set of input—output pairs (X,D) and a neural network with more
than one layers, the problem at hand is to find the weights of the neurodes
for each layer. In the previous section, the delta rule has been presented for
a single-layer perceptron. The same notion can be extended to multiple layers.
First, consider the output layer. Since each output neurode is independent of
the others, the adaptation for each neurode in the output layer is the same.
The output of the jth neurode in the output layer is obtained from the asso-
ciated inputs to that neurode:

0 = f(Wx)
The superscript o denotes the output layer. Since this is the output layer, the
desired output is available and in fact given. Hence a cost function can be
defined as the squared output error:

E =2 — o)

The weights to the jth neurode can immediately be determined by finding the
gradient of the squared error according to the weight of interest, denoted as:

Vw,(E)

The weight update equation is derived from the negative gradient and can be
written as follows.
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Aw,j” = —anlj(E)

where 17 > 0 is the step size or learning constant and is a small positive
constant. If the “error”” of the output neurodes is defined as

6(1_/' = (dk - 0_/‘{))0]’0 f’(Wx)
the weight update equations for the output layer can be rewritten as:
Aw, = n 80_;‘)’1‘

The update equation is obtained by repeatedly applying the chain rule to the
cost function. Note that the update equation is applicable for an arbitrary
activation function. The effects of the activation function is accounted for by
the f'(net) term in the partial derivatives.

For neurodes in the hidden layer, the output of the neurodes is not directly
given. However, with the use of the chain rule, the “desired” output can still
be inferred. Beginning with the squared error at the output layer again, the
weight update equation for the hidden layers can be rewritten as:

AM}i = 77 6\{izi

In summary, the generalized delta rule can be extended to an arbitrary
number of layers in the MLP. The activation function is arbitrary for any
neurode in any layer. The connectivity pattern can also be arbitrary. In other
words, the network designed can trim the network and specifically allow or
disallow connections to be made. Furthermore, there can also be fixed weights
in the connectivity pattern. Those weights that are supposed to be fixed are
simply never updated. Those connections that are not supposed to exist simply
take on zero weight values. The generalized delta rule is able to work with
an arbitrary architecture of the neural network and under a variety of con-
straints. Because of such flexibility, the generalized delta rule has been com-
monly used for many neural network applications.

7.5.4 Variations in the Back-Error Propagation Algorithm

Because of its importance and widespread acceptance, the generalized delta
rule has been a subject of intense study. There are many variations to the
basic generalized delta rule reported in he literature. Some of these variations
are presented here.

One variation deals with the definition of the error. The original definition
is called the single-pattern error:

E = (1/2) 3,_X{d, — flnet(y)1}>

In this approach, the error is defined to be the error for each input pattern



7.5 MULTIPLE-LAYER FEEDFORWARD NETWORK 203

and to update the weight matrix after the presentation of each input pattern.
This definition is straightforward but tends to be computationally intensive
because all the weights have to be updated after each successive presentation
of the input patterns. Due to the order of the presented patterns, it has been
observed that sometimes the values of some of weights oscillate back and
forth. Some patterns tend to pull the weights one way, while other patterns
tend to pull the same weight in the opposite direction.

Since the oscillatory behavior partially comes from the order of the input
patterns, one approach is to randomize the input pattern order. Define an
epoch as a complete cycle of presenting all the input patterns once. The
random approach dictates that the order of presenting the patterns is random
in each epoch. This approach tends to minimize the oscillatory behavior, thus
speeding up the convergence rate in many cases. However, this approach is
still computationally intensive since the weights are still updated upon each
presentation of the input pattern. In order to reduce the computational load,
another approach is to eliminate the oscillatory behavior in the weight ad-
aptation process. Hence, the weights are updated only after all the patterns
are presented. This is called the cumulative error approach.

E = (1/2) Elep szIK(dpk - 0]7k)2

Instead of the error being used in one pattern and the weights updated im-
mediately, all the patterns are presented first and the weights are updated
according to the cumulative error.

The previous approach relies on the square of the error. This means that
large errors tend to dominate the adaptation process. One proposal is to nor-
malized the cumulative error so that the square root of the cumulative error
is used.

E = (1/pk) \/{EPZIP EkZIK(dpk - Opk)z}

Another approach is to simply used the absolute value of the error, commonly
known as the L, norm instead of the Euclidean norm or the L, norm.

For classification, it is the number of wrong classifications that is impor-
tant. Hence, this is called the classification approach.

E = N,,./pk

The actual deviations of the error values are of less importance. If the pre-
diction is in error, then it is in error. How much in error is irrelevant.

7.5.5 Learning Rate and Momentum

The convergence rate of the update process is governed by the step size n,
sometimes known as the learning constant. If 5 is small, then convergence is
slow because the weights are updated by small increments. On the other hand,
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if n is large, then convergence is rapid because each update to the weight
moves the weight a significant amount. However, if 7 is too large, then over-
shoot of the parameter values often, occurs causing oscillatory behavior. This
leads to slow convergence again. In some cases, overshoots may also to di-
vergence.

From the standpoint of accuracy in estimation of the weight values, if 0
is small, then more accurate estimation is obtained because each update can
only move the weight a small amount, resulting in the weight not being able
to wander around the target point. On the other hand, if 7 is large, then the
weight estimation is less accurate because the weight value can wander farther
from the ideal location.

The proper setting of the learning constant is very crucial. When the input
data are known, it is possible to determine what the upper bound on 7 is.
The optimal value must lie between 0 and the maximum value. Some re-
searchers propose a learning schedule where the learning constant starts at a
maximum value and gradually decreases in value as the iteration progresses.

In general, the convergence rate of the generalized delta rule is slow. To
speed up the convergence, a momentum term is sometimes used.

Aw(t) = —m VE@®) + o Aw(t — 1)

The first term on the right-hand side is the usual gradient term controlled by
the step size n. The second term on the right-hand side is called momentum
term and is dependent on the previous change. If the current change in the
specific weight in question has the same sign as the previous change, then
the momentum term enhances the change. This extra enhancement can be
exponentially increasing when the requested change in the gradient is the
same sign for consecutive steps.

The inclusion of the momentum term in the update equation makes the
update itself an autoregressive process. This process can be unraveled into a
series representation.

Aw(@) = —m 3, Y a" VE(t — n)

In other words, the momentum allows the gradient at a particular step to
influence the updates for later steps. The use of the momentum generally
increases the convergence rate of the adaptation. The amount of momentum
to be added is controlled by a positive constant « > 0. However, care should
be exercised in setting the values for « because too large a value may cause
unnecessary oscillations in the update process.

There is a delicate balance between the choice of 1 and « because the two
parameters are not independent from one another. In many applications, even
the momentum term is on a schedule.
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7.5.6 Other Back-Error Propagation Issues

In the generalized delta rule, the algorithm has been shown to converge re-
gardless of the initial values of the weights. However, the choice of the initial
values of the weights does affect the convergence rate. It is obvious that if
the values of the initial weights are close to the optimal values, the conver-
gence will be rapid. On the other hand, if the initial weights are far from the
optimal values, then the convergence depends on the value of the learning
constant and the momentum constant.

While the back-error propagation algorithm is able to determine the values
of the weights in a neural network, the algorithm does not leave any hints as
to the proper architecture of the neural network. The architecture of the neural
network must be determined a priori.

When speaking about the architecture of a neural network, a user must
determine the number of layers, and the number of neurodes to use in each
layer. In terms of the input layer, the input dimension is usually dictated by
the application. Likewise for the output layer, the output dimension represents
the number of categories or classifications required for the problem. Hence
the output dimension is usually also dictated by the problem. As for the
hidden layer, it is not easy to determine the appropriate number of neurodes.
The general rule of thumb is to start with a large number and prune after-
wards, or to start with a small number and slowly increase.

7.5.7 Counterpropagation Network

In previous sections, a single layer of competitive learning network was used
to automatically “discover” the clusters inherent in the input data. Quite often
it is highly desirable to label the classes or to combine the classes into a
single class. This can be done by adding a special output layer after the
competitive learning layer. An architecture of the combined network is shown
in Figure 7.8.

There are two layers in the network. The first layer is the Kohonen network
with competitive learning strategy. The purpose of this layer of the network
is to automatically and adaptively locates the clusters in the input data space.
The second layer is the counterpropagation network, sometimes called the
outstar or the Grossberg layer. The purpose of this network is primarily to
combine clusters found in the first layer and to label the clusters in the desired
output.

The training of the first layer was presented in earlier sections. Once the
clusters are found, one of the neurodes in the Kohonen layer will be active
upon presentation of a particular input sample data. Since the initial weights
are random, which neurode will respond to the particular input sample is also
random even though only one of the neurodes will be active. Hence the output
of the first layer can be considered as a permutation vector where all elements
of the vector are zero except one.
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Figure 7.8. Competitive learning with counterpropagation network.

The addition of the second layer allows the network to manipulate the
permutation vector. To combine clusters into a single class, a connection can
be made from the output of the first layer to the input of the same neurode
on the output layer. To label a particular class with a specific output pattern,
simply use the weights of the second layer to generate the desired results. In
other words, the weights of the second layer are trained according to the
desired output. At this phase of the training, a sample pattern is presented to
the first layer of the network. It is assumed that the Kohonen layer has already
been trained. Therefore the weights are fixed. The presentation of a pattern
causes one of the neurodes in the first layer to become active while all the
outputs of all the rest of the neurodes are zero. The single activated neurode
is connected to every neurode of the output layer in a star configuration.
Hence it is called an outstar. Typically the activation function of the output
layer is taken to be a linear ramp function. The weights of the activated
neurode can now be trained. In fact, the weight is simply the desired output.

7.6 RADIAL BASIS NETWORKS

One of the primary uses of back-error propagation is modeling. Given samples
of the input and output pairs, the neural network finds the proper transfor-
mation so that the input space can be properly and accurately mapped to the
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output space. The mapping can also be thought as function approximation.
The transformation is the function that must be approximated from a set of
given samples.

Function approximation can be accomplished in two ways: finding a suit-
able function or interpolating. In the first method, the goal is identify a func-
tion and estimate the parameters of that function so that the output of the
function adequately produces the expected output values. Many techniques
have been developed in this direction. Most involve the user finding the form
of the function and the algorithm determining the best parameter values.
Hence the problem becomes a parameter-estimation problem.

While interpolation is often less thought of as function approximation, from
another perspective it is in fact a function used for approximation. The former
method is called parametric approximation because the function is fixed, and
only the parameters are varied to fit the application. The latter method is
called nonparametric approximation because there is no specified form to the
function and the form of the function varies with the number of data points
used.

7.6.1 Interpolation

To highlight the similarity of neural networks with interpolating functions,
this section reviews some of the interpolation methods, in particular the near-
est neighbor interpolation, the Lagrange interpolation, and the spline inter-
polation.

In the nearest neighbor interpolation method, the closest neighbors to the
unknown input point are selected. The function values of the unknown input
point are then calculated in proportion to the selected points that are closest
to the unknown point. Mathematically, the interpolated value is calculated as
follows:

y = Ejzon dj fj(x’xj)

The method works reasonably well and requires no training. However, the
closest points must be determined before the interpolation formula is applied.

In the Lagrange interpolation, the interpolation is carried out by defining
the Lagrange function. The form of the Lagrange function is predetermined
and is formed from the given points. There is no need to select points for the
interpolation as all sample points are used in the function.

Lx) = (I ;" (x = x)D/AT,; —g" (5 — X))
y = Ejzon f(x,) P(x)

In essence, the Lagrange function is the interpolating function used to ap-
proximate the model. What is so powerful about Lagrange interpolation is
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that the interpolating function changes according to the unknown input. This
is in contrast to many function approximation methods including the MLP,
where one function is used to approximate the entire range of the input data.

In the Lagrange interpolation, the interpolated values at the given sample
points are guaranteed to take on the given function values. The interpolating
function is therefore continuous. This is also the case for the nearest neighbor
approach; however, the derivatives are not continuous for the sample points.
In the spline interpolation approach, the algorithm is designed in such a way
that the derivatives at the sample points are also continuous.

7.6.2 Radial Basis Network

The derivation of the radial basis network is based on the principle of a
regularizing network. While for a typical neural network the goal is to min-
imize the cost function, here the cost function is usually taken to be the square
error. For a regularizing network, an additional term, called the regularizing
term, is added.

E(F) = (1/2) 3,V (d; = F(x))* + A¢(IDFP)

The object is to find a function (F) such that the cost function is minimized.
The cost function is composed of two terms. The first term is the standard
error term. The second term is the regularizing term, based on some operation
(D) that is related to the derivative of the function sought. Note that when A
goes to zero, the cost function degenerates to the standard cost function.
Including the regularizing term allows the smoothness of the interpolating
function can be controlled because the regularizing term is related to the
derivatives of the function.

Poggio has shown that the solution to minimizing such a cost function lies
in the use of Green’s functions. The form of the solution function can be
shown to be:

Fy(x) = (1/0) X" (d; = F(x)G(x,x)

where G(x,x;) represents a properly chosen Green’s function, x is the unknown
input, and x; is the given sample points. The Green’s function is similar in
function to the Lagrange interpolating functions. In both cases the function
is dependent on the sample points. Also, the value of the Green’s function is
dependent on the distance measure between the unknown input point and the
sample point, i.e., the L, norm: ||x — x,||%

Note that the left part of the above function is constant and is dependent
only on the sample points. Define this part as w, and rewriting the solution
function, we have:
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F,.(x) = 2._ Y wG(x,x)

The above formulation bears tremendous resemblance to the two-layer neural
network presented so far. The first layer of the network implements the
Green’s function while the second layer of the network, the output layer,
implements the above solution. In other words, w;, is the weights for the output
neurode.

Formally, a radial basis function (RBF) network is a neural network com-
posed of two layers, the RBF layer and the encoding layer. Each neurode in
the RBF layer is formed from a given sample point. The output of the neurode
in the RBG layer is the Green’s function. The sample points acts as a center.
The unknown point is compared to the center and the value of the neurode
diminishes as the unknown point moves farther away from the center, the
sample point. This behavior is similar to the inverse of the Euclidean distance.
In most cases, the Euclidean distance is radially symmetric, hence the name.
A number of Green’s functions have been proposed in the literature. Some
of the more commonly used Green’s functions are:

Inverse quadrics:  f(x) = 1/(x* + 0®a, a > 0

Quadrics: f)=Cx*+)b,0<b<1
Gaussian: fx) = exp(—(x?/20%))
Spline: f(x) = x? In(x)

Cubic: fx) =x3

The neurodes in the second layer simply serve to implement the weights
needed to relate all the RBF outputs together. This is similar to the interpo-
lating function, where the contribution of each of the centers is weighted.
Compared to Lagrange interpolation, the Green’s function is comparable to
the Lagrange function and the weights are the function values of the sample
points.

In summary, the neurodes in the two layers of a RBF network can be
described as follows:

First layer: G(|lx = x| = exp(—|x — x|[»
Second layer: y =3_"w, G(lx — x| + b

The output neurode can be augmented to include the bias. Define G’ = [G 1]
and W = [W b]”. Then

y = WiG

Note that the second layer is merely a linear combiner. The first layer trans-
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forms the input into a different space analogous to the inverse distance mea-
sure.

From a slightly different perspective, the determination of the weights and
other parameters of the RBFs is a parameter-estimation problem. The only
difference between an RBF network and an MLP is that we are now stipu-
lating specific functional characteristics for the neurodes in the first layer.
Instead of using the typical neurode (a linear combiner with a non-linear
transformation) as the first layer, we are now using the RBF neurodes. The
second layer in both cases remains the same. For the MLP, the network
parameters, namely the weights, are obtained by the generalized delta rule,
which stems from the successive application of the chain rule. While the
functional form for the first layer may have been changed, the same procedure
can still be applied.

So far, the RBF network is constructed with each RBF neurode correspond-
ing to each given sample point. When the number of given sample points is
large, a large RBF network naturally results. It is of interest, of course, to
trim the network to a smaller size than the original. One way to do so is to
use representative sample points instead of all the sample points. In other
words, if clusters can be found a priori, then the location of the center or
centroid of the clusters can be used instead of all the sample points in the
cluster. This approach, however, adds an additional step in the analysis as the
user must first determine the number and location of the clusters before ap-
plying the RBF network for modeling.

Another approach is to apply the generalized delta rule to the RBF network.
For the first layer, the parameters to be estimated are the location x; and the
spread of the centers C. For the output layer, the parameters are of course the
weights.

First Layer: ¢ (|x — xJ)) = exp(—(x — x)C"'C(x — x,))
Second layer: y =3,_" w; ¢¢ (||x — x|
Using the method of steepest descent, the parameters of the RBF layer and

the output layer can be found using the delta rule. The derivation has been
omitted here but can be found in the references.

Aw, = -,V E
At, = —m,V,E
AC/ = —nVoE

The adaptation process now carries out the two tasks: finding the clusters and
estimating the parameters of the clusters.
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Figure 7.9. A McCulloch-Pitts neurode as an SR flip-flop.

For categorical data, the location of clusters provides an efficient way to
summarize the data. For noncategorical data, a large number of clusters is
required. For example, the approximation of a straight line will require a
number of centers spaced throughout the line so that the approximation can
be kept within the desired accuracy.

7.7 SINGLE-LAYER FEEDBACK NETWORK

In an earlier section, a single feedforward neurode has been shown to simulate
the operation of many combination circuit components. In digital logic, com-
binational circuits are formed entirely from feedforward circuits. Another ma-
jor area of digital logic is sequential circuit. The basic building block in
sequential circuit is a flip-flop. A flip-flop is composed with all combinational
circuit components but is connected together with feedback. The feedback
allows the flip-flop to remember previous information. Using flip-flops and
other combinational circuit components, a sequential circuit is built that can
remember information. A flip-flop stores a single bit of information. A shift
register remembers a word.

If the output of a McCulloch—Pitts neurode is fed back as one of the inputs,
then the neurode behaves like a flip-flop. Let X = [T,s,r,0], where o is the
neuronal output fed back to itself after passing through a delay element, and
let W = [ ], then the McCulloch-Pitts neurode behaves as an S-R flip-flop.
Figure 7.9 shows a McCulloch—Pitts SR flip—flop. In other words, when SR
= 00, the flip-flop output remains as is. If the previous output is 0, the next
output is 0. If the previous output is 1, then the next output is 1. However, if
the SR input is 10, then regardless of the previous output, the next output is
1. Likewise, if the SR input is 01, then regardless of the previous output, the
next output is 0. This also implies that all sequential circuit elements can be
replaced by McCulloch—Pitts neurodes, hence a neural network.
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Figure 7.10. A single-layer feedback network.

7.7.1 Single-Layer Feedback Network

In a single-layer feedback network, the delayed output of each neurode is
connected to the input of every other neurode except itself. In other words,
there is no self-excitation. The architecture of such a network is shown in
Figure 7.10.

The network is initialized by the input X producing an initial output. Once
the network has been initialized, the network continues to update itself be-
cause the output is fed back to itself. The network will continue to change
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until the delayed output produces the exact same output. The network is then
said to be in equilibrium.

A feedback network is called a dynamic system. For a feedforward net-
work, the output is always just a combination of the inputs and does not
change according to time as long as the input remains the same. For a feed-
back network, the input only initializes the network. Once initialized, the
network output will continue to change. Depending on the system character-
istics of the network, a dynamic system could continue to change or stabilize
at an equilibrium point. In some cases, a dynamic system may diverge, caus-
ing the output to grow unbounded. This usually happens when there is positive
feedback. It is also possible for the system output to oscillate. This is called
a limit cycle. The system neither converges nor diverges. The desirable case
occurs, of course, when the dynamical system converges to equilibrium, i.e.,
a stable point.

For a dynamic system, there is a notion of an energy state related to the
state of the network. The motion of a dynamic system is always towards the
low energy state.

7.7.2 A Discrete Single-Layer Feedback Network

A discrete feedback network is formed when the activation of the neurodes
is discrete. The feedback network is shown with McCulloch—Pitts neurode.
The network is initially started with the input i. This causes an initial output.

Yo = sgn(Wi — b)

Note that the bias b can be incorporated as part of the input as before. After
the initial presentation of the input, the pattern is then removed and the output
of the network is fed back to the input after a unit time delay.

Vir1 = sgn(Wy, — b)

The state of the network is indicated by the energy level of the network and
is defined as follows:

E = (—1/2)y"Wy — iy + bTy

The energy level is a function of the current output of the neurodes and the
weights. Hence there is an energy level associated with the network at any
time.

Since the network is dynamic, the training procedure is not so easy. Given
a set of P input data sample points X = {x;} where i = 1, . . . ,P. In the
training process, the idea is to adjust the weights so that given one of the
input sample point as input to the network, the network produces the same
output as the input. This is done with no self-excitation. In other words, there
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are no inconsistencies between the input and the output, a condition for sta-
bility. During the training process, the input sample is left at the input. The
weights are then adjusted until the output equals the input

W, = XX7
Wi = W, + nAE

The weights are adjusted so that when the same pattern is presented at the
input, there are no further inconsistencies in the network and the network
gives the same pattern as output. At this point the network is said to have
been trained for that pattern. It is possible for a network to be trained to
remember more than one input pattern. This can be achieved by repeatedly
training each pattern in turn.

It can be shown that for a dynamic system, as the network changes, each
change tends to cause the network to settle towards a lower energy state than
before.

net, vf vt Av, net,Av;

>0 1 1 0 0
-1 1 2 >0

<0 1 -1 -2 >0
-1 -1 0 0

The above table shows that each change in the network output will always
cause the energy to decrease or remain as is. In other words, the energy is
nonincreasing since the change in energy is always negative or zero.

During recall, the weights are fixed. When the network is initialized by an
unknown input pattern, the initial output is fed back to the input and the
network successively adjusts its output in response to changes in its own
output.

y = f(W'X)

In summary, both the training and the recall for a single-layer feedback
network are multistep. This is characteristic of a feedback network.

Given (X)
Multistep training: W, , = W, + nAE
Multistep recall: 0= WX

Once the network has been trained, the trained samples can be retrieved.
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When a new pattern is introduced at the output, the network immediately
attempts to produce an output. If the input pattern is one of the trained pat-
terns, the trained weights cause the network to produce an output that is
consistent with the network. No further changes are produced. If the input
pattern is not one of the trained patterns, then the network output is fed back
to the input, causing the network to change. Since every change of the net-
work will cause the network state to go towards a low-energy state, the net-
work will eventually settle on one of the trained patterns as each of the trained
patterns represents a low-energy state. Hence, a discrete single-layer feedback
network is sometimes called a content-addressable memory. This means that
the stored memory can be retrieved by supplying part of the desired memory.
To retrieve one of the stored patterns, only part of the stored patterns is
required to initialize the network. Based on the partial input, the network
proceeds to gravitate towards the lowest energy state of one of the stored
patterns and thus regenerate in the process the complete stored pattern at its
output.

Content addressable memory can be used in a number of ways. One pos-
sible application is pattern recognition. A stored pattern contains both the
pattern and the key for the class of the pattern. When an unknown pattern is
presented to the network, the corresponding key according to the stored pat-
tern is retrieved or regenerated by the network. In other words, the pattern
has been recognized. Another application is image restoration. When a noisy
pattern is presented to the network, the noisy pattern is gradually replaced by
the stored pattern, thus ‘““cleaning up” or restoring the image.

7.7.3 Bidirectional Associative Memory

A bidirectional associative memory (BAM) is a special case of a feedback
network. Normally, the output of a neurode is fed back to the input of every
neurode. In a BAM network, the single layer of neurodes is divided into two
sections, with the output of the neurodes form one section connected to all
the neurode inputs in the other section and vice versa. In other words, instead
of building the correlation through the weights between every input pixels
with every other input pixels, the correlation here is built between the neu-
rodes in one section with the neurodes from the other section. The architecture
of a BAM network is shown in Figure 7.11.

As an associative memory, one section of the network can contain the data
while the other section of the network contains the key of the associated data.
When the data are presented to one section of the network, the key is regen-
erated by the other section of the network. Likewise, when the key is pre-
sented to the other side of the network, the data are regenerated by the key
on the other side of the network. Likewise, the BAM network can also be
used for pattern recognition. The network is initially trained with the patterns
and the associated class label. When an unknown pattern is presented to the
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Figure 7.11. A bidirectional associative memory network.

network, the key associated with the closest stored pattern is regenerated on
the other section.

7.7.4 Hopfield Network

Based on the properties of an electronic circuit arrangement, Hopfield pro-
posed a feedback network as shown in Figure 7.12.

The Hopfield network is analogous to a single-layer feedback network. In
Hopfield’s original formulation, the network is composed of electronic com-
ponents. A neurode is simulated by an operational amplifier. The input of the
operational amplifier is a current sum. The currents are generated as a result
of all the outputs of the amplifiers through current-limiting resistors. These
resistors are analogous to the weights of a neural network. Hence the oper-
ational amplifier is in essence a linear combiner with input weights connected
to the output of the other neurodes. Note that the input of the operational
amplifier is also connected to a parallel resistive-capacitive network. The in-
clusion of the capacitor, a nonlinear component, provides the simulation of a
nonlinear activation function.

The behavior of the circuit can be described according to the voltage and
current relationship. With the components connected as shown, the nodal
equation can be written at the input of the operational amplifier.

du/dt = (1/C) [3" wv; — (3" wy + g) + i

The nodal equation is called an equation of motion because it dictates how
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Figure 7.12. The Hopfield Net.

the neurode output, the voltage level, changes as a function of time. Hopfield
has also shown that the energy function related to the network is a Lyapunov
function and can be written as follows:

E@) = (=1/20™Wv — I'v + 3._" (1/R) L ! () dz

The energy function defined above has been shown to be the Lyapunov func-
tion for the network. Note that the Lyapunov energy function and the equation
of motion go in pairs because the Lyapunov function is not unique.

One of the major applications of the Hopfield net is optimization. Hopfield
originally proposed the use of the network to solve the traveling salesman
problem (TSP). The TSP is an NP-complete problem. It can be stated as
follows: Given the location of N cities, find the shortest path that connects
all the cities and returns to the originating city. All the cities must be visited
once and once only.

The solution to the TSP and for any other optimization problems is first
to define the objective function to be minimized. Since the Hopfield net tends
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to move towards a low-energy state as defined by the Lyapunov function, the
Lyapunov function can be used as the objective function. The solution is then
found by applying the corresponding equation of motion to the network out-
put. When the network converges to a low energy state, a possible solution
to the optimization problem is found.

In solving the TSP using a Hopfield net, the first step is to find a way to
represent the solution space. Given N cities to be visited, an array of N X N
neurodes can be used. Each row represents a city to be visited, and each
column represents the order of the route. If the output of the neurodes rep-
resents a permutation matrix with one 1 in each row and one 1 in each
column, then the permutation matrix represents a possible and legitimate
route. For example, given 5 cities (A, B, C, D, E), then a 5 X 5 array of
neurodes is used. If the array outputis [0 1000;10000;00001;00
100; 0001 0], then the route is B—A—D—C—E—B.

The next step in solving the TSP is to define the objective function. Since
the energy function has a quadratic form, the objective function must also be
in a quadratic form. The primary objective of the TSP is to minimize the path
length. Hence the cost function is the path length.

E, = AS,33 v, Uy i # J

In addition to the cost function, it is necessary to enforce further constraints
to ensure that the solution is a legitimate route. Clearly, if the salesman does
not go anywhere, the path length will be zero, and that is not an acceptable
solution. Constraints are enforced by adding penalty to the cost function when
the constraints are not satisfied. To enforce that each city is only visited once,
each row of the permutation matrix must contain only a single one.

E,= B3 32, Uy; Uy, X # Y

Likewise, to enforce that at each turn only one city is visited, each column
of the permutation matrix must also contain only a single one.

E; = C(2x2, vy, — n)

The two constraints tend to discourage more than one 1 in each row or column
but do not discourage (rather encourage) nothing in the rows or columns.
Hence, an additional constraint is needed to ensure that there are exactly N
1I’s in the entire network. This is accomplished by another constraint.

E,=D333,dy, (Uy; + Uy, ), X # Y

The final objective function is the weighted combination of the distance cost
function and the three constraints formulated in quadratic forms.

With the desired objective function found, the next step is to cast the
objective function in the form of the Lyapunov function for the Hopfield net.
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Note that even though the formulation of the TSP problem indicates an array
of neurodes, hence individually identified by a double index, in reality the
neurodes are in a single layer because the output of any neurodes is fed back
to the input of all other neurodes. Changing the energy function into a double
index form and matching the objective function with the energy function, the
weights of the neurodes can be found as follows:

Wiy = =248y (1 — ) — 2B5;(1 — 8xy) — 2C — 2Ddyy (8,45 + 8,,-1)

Note that there is no training of the weights here. Rather, the weights them-
selves represent the optimization problem to be solved. In fact, the weights
encapsulate the problem itself. Thus, the problem is solved during the recall
mode. The network is initialized with random weights and then let loose. As
a dynamic system, the network output is constantly changed while the weights
are fixed. Each change causes the energy function to decrease, thus accom-
plishing the objective of minimizing the objective function. Eventually, the
output settles in a low-energy state representing a possible solution to the
problem.

7.8 SUMMARY

A single neurode represents an elementary processing unit and can be used
as a building block for a variety of systems and applications. The basic def-
inition of a single neurode is a linear combiner followed by a nonlinear ac-
tivation function. From such a simple processing element very complex
systems can be built. With proper choice of the input weights, a neurode can
function like any Boolean components. Hence, much as AND, OR, and NOT
gates can be used to build powerful computers, collection of neurodes can be
expected to perform complex tasks.

Collection of neurodes into a single layer in a feedforward manner provides
powerful mapping abilities such as associative memory, modeling, function
approximation, and classification. The power of the neural network lies not
only in the fact that the network is capable of performing the above tasks,
but even more in the fact that the network is able to learn how to perform
the tasks from given examples. In fact, the network is able to learn on its
own.

When additional layers are cascaded together into a multiple-layer network,
it has been postulated that such a network is able to approximate an arbitrary
function. The development of the generalized delta rule, more commonly
known as the back-error propagation method, further enhances the use of
multiple-layer perceptron. Complex and nonlinear models can now be mod-
eled by the network.

When the output of the network is fed back to the input, a feedback net-
work is obtained that functions like a dynamic system. A dynamic system is
not only good for pattern recognition and image enhancement, but more im-
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portantly it can be used for solving optimization problems. Through taking
advantage of the dynamics of the network, a solution to the optimization
problem can be iteratively found.
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NEURAL-FUZZY NETWORKS

The field of computational intelligence or soft computing encompasses three
main research directions: artificial neural networks, fuzzy logic, and evo-
lutionary algorithms. Each area is well suited to different aspects of the
problem-solving process. In the first section below, these three technologies
are compared.

8.1 TECHNOLOGY COMPARISONS

The strength of neural networks lies in their ability to model unknown systems
easily. One of the most popular neural network models is based on a nonlinear
transformation of a linear combiner. Using the backpropagation algorithm, the
network can be trained with input data to model an arbitrary system, i.e., to
approximate an arbitrary function. Other neural network models such as coun-
terpropagation networks and radial basis function networks also provide func-
tion approximation using slightly different topology and training techniques.
Furthermore, there is a whole set of other networks such as the Hopfield nets
that are designed to solve open-ended optimization problems. A third type of
neural networks, such as Karhonen’s maps, can be used to discover clustering
through a self-organizing weights update algorithm. With a slightly different
training algorithm, a single-layer perceptron with added lateral connections
can also be configured to do principal components analysis (PCA). PCA is
another form of representing the input data with only the salient features with
minimal dimensions.

While neural networks are ideal for modeling known or unknown associ-
ations that exist between the input and output data, significant data cleaning
and preprocessing are usually needed. In other words, input data must be
carefully coded and prepared for the network to process. Another difficulty
with neural networks is that the network must first be trained. The more input
data, the better the training results. The richer the input data, the more ac-
curate the model. However, training requires substantial time and resources.

221
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These difficulties restrict the widespread use of neural networks in many
applications. In many decision-making systems, it is important to be able to
explain the process by which the decision is made. It is not a simple matter
to derive rules from neural networks.

The main concept in fuzzy logic is to use unsharp boundaries of member-
ship functions to describe the implicitly imprecise concepts in data represen-
tation. From this perspective, fuzzy logic is ideally suited for user interactions
and data representation. Since fuzzy logic is also numerical in nature, con-
cepts can be expressed and manipulated as mathematical variables. Using the
extension principle, most of the crisp operations can be readily adapted to
fuzzy operations. In the crisp domain, models are made using regression or
autoregressive-moving average representations, Likewise in the fuzzy domain,
fuzzy models can also be made using fuzzy regression and fuzzy operators.
Hence, fuzzy operations include both logical operations and numerical op-
erations. Another useful feature of fuzzy logic is its ability to make inferences.
Propositions are readily represented by fuzzy values. Since implication is also
a fuzzy operator, approximate reasoning can be carried out naturally as fuzzy
computations.

The concepts of fuzzy logic clearly complement those of neural networks.
While fuzzy logic provides simple data representation, neural networks pro-
vide none. Where fuzzy logic can be used to model a system, neural networks
are well suited to provide sophisticated models for diverse type of systems.
However, if there is prior knowledge about the underlying system, fuzzy logic
can readily encapsulate the knowledge in terms of rules and relations, while
it is not particularly easy to preprogram a neural network with prior knowl-
edge. Given a set of training samples, it is not simple to train a fuzzy model,
but many algorithms have been developed in the past for training neural
networks.

Another aspect of computational intelligence is evolutionary algorithm.
This type of algorithm is biologically inspired. The principal idea is that a
solution can be produced through genetic reproductions among a population
of viable individuals, each individual representing a possible solution. There
are two main classes of evolutionary algorithms: genetic algorithms and ev-
olutionary programming. Genetic algorithms use genes, collectively called
chromosomes, as the basis to represent possible solutions. Solutions are paired
using crossover operations to produce new solutions. Mutations are used to
enrich the genetic pool of the population and explore unchartered territories
of the search space. Evolutionary programming places less emphasis on the
genetic structure and uses mutation as the primary operation to reproduce
offspring.

Evolutionary programming is a search methodology and is suited for solv-
ing open-ended optimization problems. While neural networks have been
shown to solve open-ended problems such as the traveling salesman problem,
detailed analysis shows that the neural network spends significant amount of
time converging to a local minimum. Simulated annealing has been proposed
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as a method to cause the neural network to settle on a global minimum, but
the technique is computation intensive because the annealing temperature
must be lowered very slowly. Evolutionary programming provides a signifi-
cantly more efficient way to search since each step of the algorithm produces
a whole new generation of solutions. In neural networks, the objective func-
tion and all subsequent constraints must be explicitly programmed into the
weights. In evolutionary algorithms, the algorithm is independent of the ob-
jective functions and associated constraints. The algorithm requires only that
a cost function be associated with each solution.

Evolutionary programming with fuzzy logic are complementary. In fuzzy
logic, open-ended search can be obtained through forward or backward chain-
ing performed in an orderly fashion. Quite often the search is exhaustive,
hence the technique is good for problems with a small solution set. In evo-
lutionary algorithm, the solution is obtained by randomly generating individ-
ual solutions; hence the technique is ideally suited to problems with a large
solution set.

For complex systems, no single technology can easily satisfy all the re-
quirements of the problem. In the quest for a solution to the problem at hand,
it is natural to combine more than one technology to create hybrid systems.
Hybrid systems are designed to take advantage of the strengths of each system
and avoid the limitations of each system. For example, it is natural for neural
networks to learn but it is cumbersome for a fuzzy system to learn. Hence a
combination of the two would result in a rule-based system that can learn
and adapt. On the other hand, learning in neural network is slow. Hence there
are many proposed hybrid systems where a fuzzy system is used to tune the
learning rate and momentum terms in an effort to speed up the convergence
rate. In systems where prior knowledge is available, what is known can be
easily coded in rules and facts, but it is not a simple matter to encode prior
knowledge in a neural network. These are only a small sample of applications
where hybrid systems would be ideal. In this chapter we examine the syn-
ergism between neural networks and fuzzy logic.

8.2 NEURONS PERFORMING FUZZY OPERATIONS

One of the simplest types of hybrid systems involves training a neural network
to perform fuzzy logic operations. The main advantage of this is the reduction
of time complexity. Since there are many neural network chips available
through many vendors, these chips are capable of executing billions of neural
connections a second. If a neural network can be trained to perform fuzzy
operations, then the fuzzy operations can also be performed at the same speed.
This is a definite advantage to emulating the fuzzy operations using micro-
controllers or simulating the operations using computer instructions.

The three most basic operations in classical set theory are AND, OR, and
NOT operations. The corresponding operations in fuzzy logic are min, max,
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Figure 8.1. A neuron for performing the fuzzy #-norm operation.

and complement. When a fuzzy variable can only take on the two extreme
values (0 and 1), then the fuzzy operations degenerate into the respective
classical set operations. In a more general setting, the terms conjunctive, dis-
Jjunctive, and complement are used to represent intersection, union, and com-
plement operations.

8.2.1 Neurons Emulating Fuzzy Operations

A simple neuron can be made to perform logic functions with some special
arrangement. This section presents the neural network arrangement for con-
junctive, disjunctive, and complement networks.

A conjunctive network performs the intersection operation for fuzzy vari-
ables. Using the definition of standard #-norm, the intersection is the minimum
operation on all fuzzy inputs. A standard feedforward neural network with
special input arrangement can be used to perform this operation, as is shown
in Figure 8.1 [45].

The network is designed to find the minimum of the input fuzzy values. It
is assumed that the crisp inputs have already fuzzified. Assume the fuzzified
values are p;,, i = 1 ... N. In order for the network to work, the fuzzy inputs
are first ordered giving p',, i = 1 ... N. Then the difference from consecutive
inputs are obtained: ¢, i = 1 ... N.

q:=p =P

where p', = 0 by definition. For the conjunctive network, the weighting func-
tion is predefined to be 1/n. Define the connection weights v; where

v; = hardlimiter (SUM,_/" w; — 1)

The hardlimiter output is a one whenever the argument is greater than or
equal to one, otherwise is a zero. The activation function is simply taken to
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Figure 8.2. A neuron for performing the fuzzy #-conorm operation.

be the linear function. Hence the output of the neuron is simply the weighted
sum of the input with the connection weights.

Using the same basic architecture, a disjunctive network can also be ob-
tained. A disjunctive network performs the union operation for fuzzy varia-
bles. Using the definition of standard z-conorm, the union is the maximum
operation on all fuzzy inputs. A standard feedforward neural network with
special input arrangement can also be used to perform this operation, as
shown in Figure 8.2 [45].

The network is designed to find the maximum of the input fuzzy values.
It is assumed that the crisp inputs have already fuzzified. Assume the fuzzified
values are p;, i = 1 ... N. In order for the network to work, the fuzzy inputs
are first ordered giving p’;,, i = 1 ... N. Then the difference from consecutive
inputs are obtained: ¢, i = 1 ... N.

g =p;— P

where p', = 0 by definition. For the disjunctive network, the weighting func-
tion is predefined to be all 1. Define the connection weights v, where

v; = hard-limiter (SUM,_/" w; — 1)

The hardlimiter output is a one whenever the argument is greater or equal to
1, otherwise it is a zero. The activation function is simply taken to be the
linear function. Hence the output of the neuron is simply the weighted sum
of the input with the connection weights.

In a like manner, a complement network can also be designed. A comple-
ment operation is a unary operation, in that the complement is applied to only
one fuzzy variable. Using the definition of the standard complement operation,
the output is simply the difference of the fuzzy input from one. Hence there
are two inputs in the complement network: the first is the fuzzy variable and
the second is a constant one. The corresponding connection weights for the
two inputs are —1 and 1, as shown in Figure 8.3.
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Figure 8.3. A neuron for performing the fuzzy complement operation.

8.2.2 Neurons Performing Fuzzy Operations

A hybrid neuron is also a neuron with crisp inputs and crisp outputs. However,
instead of performing a weighted sum followed by a nonlinear transformation,
a fuzzy neuron performs one of the fuzzy operations such as the #-norm or
the t-conorm operation. While this adaptation of a neuron may not be bio-
logically based, the topology and architecture are certainly biologically in-
spired.

Corresponding to the crisp inputs, a hybrid neuron also has crisp weights.
In general, arithmetic operations such as multiplication and addition are not
used in combining inputs and weights because these functions tend to produce
resultant values that do not necessarily lie in the interval between O and 1.
Instead, fuzzy operations are preferred so that the resultant values do lie in
the interval between 0 and 1. Each input and its corresponding weight can be
combined using a continuous operation such as t-norm or #-conorm. The ag-
gregation of all weighted inputs can also be performed with any of the fuzzy
continuous operations. If a nonlinear transformation is required, a continuous
function mapping the aggregation value to the output is used.

A hybrid AND neuron takes on two crisp inputs and produces a single
crisp output. Corresponding to each input is a crisp connection weight. Each
input and its associated weight are combined using a disjunctive (union) op-
eration (C(x,y)). The weighted inputs are then aggregated together by a con-
junctive (intersection) operation (7(x,y)). Using C to denote the t-conorm and
T the t-norm operations, the output of the hybrid AND neuron can be denoted.

y = T(Cx;, wy), Clxy, W)

Likewise, a hybrid OR neuron takes on two crisp inputs and produces a single
crisp output. Corresponding to each input is also a crisp connection weight.
Each input and its weight is combined using a conjunctive (intersection) op-
eration (T(x,y)). The weighted inputs are then aggregated together by a dis-
junctive (union) operation (C(x,y)). The output of the hybrid OR neuron can
be denoted
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Figure 8.4. A hybrid AND neuron and a hybrid OR neuron.

y = C(T(x;, wy), T(x,, wy))

A hybrid AND neuron and a hybrid OR neuron is shown in Figure 8.4.

8.3 NEURAL NETWORK PERFORMING FUZZY INFERENCE

One of the strengths of a fuzzy logic system is its ability to make inferences.
Model characteristics are usually written in facts and rules. An example of a
rule is:

If xis X, and y is Y, then z is Z;

The rule states that if the input variable x belongs to the membership X; and
the input variable y belongs to the membership Y,, then the output variable z
will belong to Z,. There are a number of approaches in realizing a rule and a
rule set. These approaches are explored in this section.

8.3.1 Regular Neural Network with Crisp Input and Output

The if—then rule points to a system having two crisp inputs and a single crisp
output. Though the rule deals with fuzzy variables, x, y, and x are crisp by
themselves. The fuzzy value describes the degree that the crisp value belongs
in the X,, Y,, and Z, membership functions respectively. Note that the output
is also a crisp value. It is now easy to see that the if—then rule can be viewed
as a black box with two crisp inputs and one crisp output. As such, the rule
can be modeled by a regular neural network such as a multilayer perceptron.

If the membership functions of the input and output variables are know
a priori, then values of the membership functions can be sampled and used
as a training set for the neural network, i.e., {(x,y),z) where the first set of
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values in the double is input parameters and the second parameter of the
doublet is the output. If training samples are used to train the if—then rule,
then the same training samples can likewise be used to train the neural net-
work. The mapping from the if—then rule to the neural network is direct and
straightforward. If there are more inputs and/or outputs, then the correspond-
ing neural network will also have the same number of inputs and outputs.

8.3.2 Regular Neural Network with Fuzzy Input and Output

For some problems, the input may not be a crisp value, but rather a fuzzy
value defined by the associated membership functions. A regular neural net-
work can still be used in this case. One approach is to sample the membership
function with a discrete number of domain values. Instead of working with a
continuous interval, the membership function is sampled at discrete values.
In this case, the input to the neural network is a set of membership values at
discrete locations of the input parameter. The shape of the membership curve
is represented by the function values at the selected locations. Likewise, the
output membership curve is represented by a series of function values at
discrete points.

Representation in this format is very powerful because a rule can now be
formed for the entire membership function.

If X and Y, then Z

Here, X, Y, and Z are membership functions. Using a series of crisp values,
each of the membership functions can be sampled. The entire series for X
and that for Y serve as inputs to the neural network. Likewise, the entire series
serves as the output from the neural network. The training sequence is then
a double ((x;, X, - - - 5 X3 V1> Yo -« « - » Vo)s (Z45 205 - - - 5 Z,)) Where the first
parameter contains the two sequences for X and Y, and the second parameter
contains the sequence for the output Z. The neural network can now be re-
peated trained using the standard backpropagation method or other standard
techniques until the network output yields the desired result.

Uehara and Fujise have proposed a variation on this scheme. Instead of
discretizing the domain and sampling the membership functions at those dis-
crete points, they propose that the membership function be represented by a
series of a-cuts. Each a-cut represents an interval. In this case, the input to
the neural network would be a series of interval values for different a-cut
values. Likewise, the output from the neural network would also be a series
of interval values for the same corresponding a-cut values. Regardless of the
discretization approaches used, the membership function can easily be recon-
structed.
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Figure 8.5. A neural network for approximate reasoning.

8.3.3 Fuzzy Inference Network

With some careful rearranging of the inputs, a single neuron has been shown
to function as a fuzzy AND, a fuzzy OR, and a fuzzy complement operator.
But the real power lies in the ability of a neural network to emulate the fuzzy
inference process.

In approximate reasoning, the system is represented by a set of rules and
facts. Facts are inputs obtained from the system environment. Rules describe
the model characteristics. Using a set of predefined membership functions,
crisp inputs are converted to fuzzy variables. Rules relate the fuzzy input
variables to fuzzy output variables. The antecedent of each rule is constructed
with conjunction and disjunction of the fuzzy input variables. The inference
is made using the implication operator based on the generalized modus po-
nens, modus tollens, and hypothetical syllogism. After the inference has been
carried out, the fuzzy output variables are defuzzified to yield a crisp number
for output.

The process described above can be emulated by a neural network with a
topology similar to a multilayer perceptron as shown in Figure 8.5.

Ideally, the input to the network is crisp numbers and the output of the
network is also crisp numbers. The first layer of the neural network is to
fuzzify the input values. The fuzzification process can be performed by a
layer of radial basis function (RBF) neurons or by special subnetworks de-
signed to emulate the membership functions. Each RBF neuron emulates a
single membership function, hence a set of RBF neurons is required to pro-
duce an array of fuzzy values for each crisp input.

The second layer of the neural network implements the conjunctive and/
or disjunctive operation of the fuzzy inputs for the antecedents of each fuzzy
rule. Neurons that can emulate conjunction and disjunction have been pre-
sented in the previous section. These specialized neurons are used to combine
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Figure 8.6. An ANFIS network.

the fuzzy input variables produced by the first layer. If the rule antecedents
are overly complex, the operations can be emulated by more than one layer
here. One suggestion is a conjunctive layer followed by a disjunctive layer.

The third layer of the neural network implements the implication operation.
The fuzzy value of the antecedent is used to limit the degree of truthfulness
of the output membership functions. This also is a conjunctive operation. To
realize the output membership functions, a set of neurons is used to represent
the possible crisp output possibilities. The output of the neurons in this layer
is limited by the truthfulness of the antecedents obtained from the previous
layer.

The fourth layer is the consequent layer. This is a disjunctive layer as the
consequent is usually taken to be the f-conorm from all the inferences. The
final conclusion is the cumulated truthfulness, i.e., the union from all the
inferences.

The last layer is the defuzzification process. A single neuron is used for
each crisp output. The weights are arranged in such a way as to emulate one
of the defuzzification methods. The most common one is the centroid method,
where the crisp output is the centroid of the fuzzy output values.

8.3.4 ANFIS

A more simplified network has been proposed by Shing and Jang [95] and
Baglio et al. [6]. The bulk of the network is used for fuzzification using two
layers of perceptrons. The inference is based on sigma-pi neurons, and the
output membership function is not used. The output of the network directly
yields a crisp value. The proposed neural network is shown in Figure 8.6.
The first layer consists of two-input perceptrons with the usual sigmoidal
transformation. This layer produces a series of sigmoidal curves. The first
input comes from the crisp input value. The second input is always one rep-
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resenting the bias. A bias is needed to offset the crisp input values. This has
the same effect as shifting the sigmoidal function to be centered at the desired
value. The neurons at this layer are similar to other neural networks using a
single layer of perceptrons.

A second layer is next used to collate the sigmoidal outputs together to
form membership functions. This layer is composed of two-input neurons
with linear activation function. The connection weights are simply 1 and —1.
Typically, two sigmoidal functions are needed to make one membership func-
tion. A membership function is realized by taking the difference between two
sigmoidal function outputs.

The next layer is composed of a set of sigma-pi neurons. The output of
these neurons is the product of the weighted inputs instead of the sum of the
weighted inputs. The fuzzy inputs are weighted and multiplied to realize the
conjunctive relation of the antecedent. In this case, the intersection of
the various fuzzy inputs is realized using the product rule instead of the stan-
dard (min) rule.

The last layer is simply a set of regular neurons with linear activation
functions. The output of each neuron in this layer is the weighted sum of the
previous layer. The output of the previous layers represents the strength of
activation of a particular rule. This layer collates the strengths of different
rule activations together to produce a set of crisp output values.

Another variation on the same network is to eliminate the second layer
entirely. If a Gaussian transformation is used as the activation function instead
of the sigmoidal function, then the shape of the Gaussian function can be
used to represent the membership function. If there are a lot of linguistic
variables, this can greatly simplify the network topology.

The key point to observe here is that by emulating the fuzzy rules in neural
network architecture, the network can now be trained with standard back-
propagation methods in response to training patterns. This means that the
shape of the membership functions and the strength of the connection for the
rules can be adjusted and learned. When the training is completed, the neural
network can simply be converted back to fuzzy rules if desired. This is the
primary advantage of using a neural network to emulate fuzzy inference.

8.3.5 Applications

A direct application of emulating fuzzy logic using a neural network is to use
the output of the network as a way to tune parameters of another neural
network. It has often been observed that the learning rate and momentum
greatly affect the ability of a neural network to converge. However, there is
no simple way to select the proper values of the learning rate and the mo-
mentum factor. It has also been suggested that an adaptive scheme could
possibly be more effective during the training phase of the process. This
approach has been proposed by Hertz and Hu [1992], who use a second neural
network to adjust the learning rate adaptively according to a set of heuristic
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rules [40]. The second neural network emulates the heuristic rules and pro-
duces the recommended values for the learning rate to be used in the first
network during the its training process. To accomplish this, a neural network
is used with one input and one output parameter. The crisp input parameter
is the error for the present iteration. The crisp input value is first fuzzified
into seven membership functions (NL, NM, NS, ZE, PS, PM, PL) correspond-
ing to whether the error is positive or negative and whether the magnitude of
the error is great or small. Hertz and Hu developed a number of heuristic
rules that are preprogrammed into the neural network. The collation of all
rules yields the fuzzy values for four membership functions (ZE, PS, PM,
PL) for the learning rate. The output of the network is a single variable, the
learning rate. The four fuzzy output values are defuzzified into a single crisp
value.

Another application was proposed by Baglio et al. in modeling urban traffic
noise [6]. The goal is to predict the degree of urban noise from passage of
motor vehicles. However, the noise is often mollified due to the shadowing
effects of buildings and building elevation. Baglio et al. compared the use of
a traditional neural network against the use of a fuzzy inference network. It
was found that the performance of the fuzzy inference network is comparable
to the traditional neural network. However, the fuzzy inference network has
a significantly lower computational complexity than a traditional network.

8.4 CLUSTERING AND CLASSIFICATION

In clustering, while the training patterns are given, the exact grouping of these
patterns is unknown. When the training patterns are seen repeatedly, a neural
net or fuzzy system is used to categorize the patterns into distinct groups or
clusters. In pattern classification, not only are the training samples given, but
the cluster that each training sample belongs to is known. The task of the
neural network or the fuzzy system is to learn the association so that the
system can successfully recognize the input patterns according to the proper
class.

If a neural network is used for the recognition process, then the input to
the neural net is a doublet {((x,, x,, . . . , x,),Class) where the first parameter
represents the input pattern and the second parameter represents the class that
the pattern belongs in. Since a neural network can accommodate large input
dimension, it is not unusual for the input set to consist of the original raw
data set.

If a fuzzy logic system is used, then the doublet can immediately be written
in the form of a rule.

If x, is X, and x, is X, and . . . and x, is X, then Class.

When rules are used to describe an input pattern, they are more efficient when
a small number of antecedents is used. Hence the raw data pattern is often
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preprocessed to reduce the dimension of the original data set. A number of
transforms can be used, including Fourier transform for a one-dimensional
signal and two-dimensional images. Other transforms used are principal com-
ponent analysis and singular value decompositions. If more reduction in data
dimension is required, then a feature extraction process is usually performed
first. The input to the rules would then be extracted features. In many cases,
these features are meaningful to human recognition. Hence the reasoning from
a fuzzy logic system can be explained in more recognizable terms to the user.

8.4.1 Classification

Consider a simple two-class system with two inputs. Each dimension of the
input space is divided by a set of membership functions. The boundaries of
the membership functions separate the input space into distinct areas. Each
area can now be labeled with the class number as shown in Figure 8.7.

Further subdividing the input parameters into additional membership func-
tions makes it clear that any clusters can be formed on the input space.

Assume that the input parameters have been set up each with two input
parameters, i.e., x, € {Small, Large} and x, € {Small, Large}. Then there
are four areas in the input space. This corresponds to four rules:

If x, is Small and x, is Small, then Class One
If x, is Small and x, is Large, then Class One
If x, is Large and x, is Small, then Class Two

If x, is Large and x, is Large, then Class Two

While the number of membership functions is known and set a priori, the
exact shape and location of the membership functions can be varied for ac-
curate results. This is when training samples are used to adapt the shape and
locations of the membership functions.

The same problem can be cast into a neural network paradigm proposed
by Sun and Jang. The neural network would have two input parameters and
a single output parameter as shown in Figure 8.8. The inputs to the neural
network would be the two input parameters, both crisp. The first layer of the
neural network is to compute the degree of likeness between the crisp input
parameter and the membership function. These neurons can be radial basis
function neurons or regular neurons with Gaussian activation functions. For
the Gaussian activation function, the adjustable parameters are the width and
centroid of the Gaussian curve. Other membership functions, including tri-
angular and trapezoidal shapes, can also be used. For triangular membership
function, the adjustable parameters are the left lower limit, the center upper
limit, and the right lower limit. For trapezoidal membership function, the
adjustable parameters are the left lower limit, upper limit, right upper limit,
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Figure 8.7. Clustering with membership functions.

and right lower limit. Regardless of the activation function used, each param-
eter of the activation function can be adapted by the standard backpropagation
approach.

The second layer of the neural network emulates the conjunctive operation.
This is used to connect the various parts of the antecedent together. The output
of this layer is the strength of the present rule indicating how closely the
input parameters match the stated membership functions. If the match is good,
then the strength of the rule is strong; however, if the match is poor, then the
strength of the rule is greatly diminished.

The third layer of the neural network is a single-layer perceptron. The
output of each neuron is the weighted sum of the firing strengths of the rules

—> Class One

——> Class Two

Figure 8.8. A neural network performing fuzzy classification.



8.4 CLUSTERING AND CLASSIFICATION 235

Figure 8.9. A fuzzy perceptron.

in previous layer. The weighted sum is subjected to a nonlinear activation
function that is normally taken to be the sigmoidal transformation. In the
present case, since there are only two classes, a hardlimiter can be used to
indicate whether the output is Class One or Class Two.

During training, the training data consist of the input data and their asso-
ciated class identification. Since the third layer is a single-layer perceptron,
the weights can be adapted by the standard backpropagation approach. The
second layer implements the conjunctive operation. Most of the time there
are no adjustable parameters in this layer. For the first layer of the neural
network, the parameters there can also be adjusted by the backpropagation
approach.

8.4.2 Multilayer Fuzzy Perceptron

Nauck and Kruse developed a special three-layer perceptron called fuzzy
perceptron [71]. The system is called NEFCLASS, which stands for a neuro-
fuzzy system for the classification of data developed. The fuzzy perceptron
is designed to learn from training samples the separation for the different
classes. The knowledge of the pattern classification is contained in a set of
fuzzy rules.

The fuzzy perceptron is composed of three layers, the input layer, the
hidden or rule layer, and the output layer, as shown in Figure 8.9. Layer 1
performs the fuzzification of the crisp input parameters. Layer 2 implements
the antecedents of the rule set. Layer 3 performs the defuzzification.

Layer 1 performs the fuzzification process. Each neuron in this layer inputs
one crisp parameter and outputs a series of fuzzy values according to the set
of membership functions defined for that parameter. Each output fuzzy values
indicates the degree of match between the input crisp value and the associated
linguistic concept. Layer 2 performs the conjunctive operation for selected
fuzzy values. Each neuron in this layer implements one fuzzy rule. The output
of the neuron is the activation strength of the associated rule and is obtained
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by a fuzzy AND of the various fuzzy membership values. Layer 3 performs
the defuzzification process by combining the activation strengths of all the
rules together to form an estimate of the class. It should be noted that the
output does not actually yield an estimate of a specific class. Rather,
the output shows an estimated possibility of each class. If desired, a fourth
layer such as a MAXNET can be used to interpret the results by selecting the
class with the largest output.

To start, the user must define the basic structure of the fuzzy perceptron.
It is necessary to define the number of neurons in the hidden layer and make
an initial estimate of the various membership functions in the input layer.
Alternatively, the neurons in the hidden layer can be added iteratively during
training. When an input pattern is submitted to the network, a search is per-
formed to see what set of input fuzzy values would yield the best output. The
set of selected fuzzy values is then inserted into the hidden layer if there are
no other neurons in the hidden layer representing the same set of input fuzzy
values. If the system is small enough, then it is possible to start with all
possible combinations. After training, a scoring method is used to gauge the
effectiveness of each rule and any poorly performing neurons are then
trimmed from the system.



9

EVOLUTIONARY
COMPUTING

9.1 INTRODUCTION

The area of intelligent computation involves three main aspects: fuzzy sys-
tems, which are ideally suited for problem representations and user interac-
tions; neural networks for making models; and evolutionary programming for
finding a solution or making an inference. The act of finding a solution is
called optimization. During the optimization process, a solution is sought that
would minimize or maximize an objective function subject to a given set of
constraints on the variables. There are a great number of practical problems
whose solutions require such an optimization process. In numerical analysis,
the solution of even simple problems such as root finding or other problems
requiring a search of the local minimum or maximum involves the process
of optimization.

Optimization problems can be constrained or unconstrained. In uncon-
strained optimization, the parameter values are allowed to take on any values
as long as the objective function is minimized or maximized. In constrained
optimization, one or more of the parameters may be constrained to exist
within a specific region or relationship. These constraints are usually written
in the form of inequalities. In many circumstances, a constrained optimization
problem can be recast into an unconstrained optimization problem by rewrit-
ing the inequalities with a penalty function to be included in the objective
function. In this manner, the primary objective function is minimized or max-
imized along with the constraints ensuring that the solution found would
satisfy both the desired objective function and the constraints at the same
time. This technique is particularly useful and is often used in evolutionary
programming.

In most problems dealing with optimization, the solution set can be quite
large, and oftentimes the optimal solution is intractable. Depending on the
application, there are often good solutions that are close to the optimal so-
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lution. In this case, having a good solution is good enough and the additional
expense of actually locating the optimal solution for an incrementally small
benefit may not be justified. Hence the optimization task becomes finding a
suboptimal but good solution that yields a cost close to that given by the
optimal solution. Most of the time a solution must be found within a certain
allotted time. For example, a metal-cutting machine must find the best way
to cut a piece of sheet metal with minimal waste, or an MRP program must
arrive at a production schedule within the time available. In these cases, it is
particularly crucial to use an optimization algorithm that will give a good
solution quickly.

Many search algorithms have been proposed in the literature. The simplest
search algorithm is the exhaustive search approach, where the search takes
place over the entire search space by checking every possible combination of
the search variables. This method yields the optimal solution when the entire
space is searched, a luxury that is not often possible. Many proposed pruning
techniques allow some of the search space to be trimmed. When the search
time is limited, there is no guarantee that a good solution can be found in
this case. In an exhaustive search approach, a potential search solution is
generated based on what has been generated before.

Another approach is the random search, where possible solutions are ran-
domly generated and checked against the objective function. At any time the
best solution is kept. When the search time is exhausted, the best solution
found is taken to be the solution. The approach works most of the time
because the longer the search time allotted, the better the solution will be.
Random search does not work well with combinatorial optimization because
there is no relationship between possible solutions. However, there is no guar-
antee that a good solution or any solution could be found with random search
because the potential solutions are generated randomly each time.

An ideal case is an approach where a good solution can be found within
an allotted time yet potential solutions are not generated randomly. In other
words, the algorithm would learn from past mistakes and propose new solu-
tions that would account for what has been learned from past proposals. Many
types of search algorithms have been proposed in the literature based on
various principles. In recent years, a set of biologically inspired approaches
has been proposed, including simulated annealing and genetic algorithms. In
simulated annealing, developed by Metropolis et al. [63] and Kirkpatrick [53],
a hypothetical parameter called temperature is used. When the temperature is
high, the search is allowed to wander all over the search space. After the
search has been carried on for awhile, the temperature is gradually cooled,
causing the search to be narrowed gradually to the local minima or maxima.
It is commonly accepted that when the temperature is reduced slowly, the
solution will more likely converge towards the global solution. The term sim-
ulated annealing comes from the metal annealing process, where defects in
the metal are cured by heating the metal to a high temperature and then
cooling it slowly.
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Another biologically inspired approach is evolutionary computing. The
goal is to learn from previous guesses and propose potential new guesses that
would preserve the desirable qualities of previous success. An analogy for
this optimization process is searching for a superindividual with the correct
genetic makeup. Instead of the entire population being searched for that su-
perindividual, the desired person is obtained through a breeding program with
promising parents. Two competing technologies have been proposed in the
literature. One approach was originally proposed by Holland [43] and later
further developed by Goldberg [31]. This approach is generally referred to as
genetic algorithm. Another approach, proposed by Fogel [30], is commonly
referred to as evolutionary programming.

9.2 BINARY GENETIC ALGORITHM

In genetic algorithm, the most important aspect of the whole process is to
arrive at a representation that will capture the desirable characteristics. The
representation is biologically inspired and is based on the genetic system in
biology. Search variables are represented by chromosomes. Each gene rep-
resents one possible value of a search variable. An individual is a collection
of genes and is collectively called the chromosome. A population can now
be generated, with each individual having a different chromosome. Each in-
dividual thus represents a different solution of the search parameters, hence
there is a cost associated with each individual.

A set of random initial population is generated. This population is the
initial pool. Each individual is evaluated against the cost objective, resulting
in some individuals giving good solutions and others giving bad solutions for
the current generation. Most of the individuals giving bad solutions are elim-
inated from the race and are deleted from the pool. As the algorithm pro-
gresses to the next generation, the remaining individuals form the mating
pool. Some of the individuals in the mating pool are selected to participate
in the mating process. In the mating process, each individual is paired with
another. In the simplest case, the match is randomly made. Each successful
marriage will produce a number of offspring. Offspring inherit the genetic
information from their parents. It is reasoned that those individuals giving
good solutions when combined together will yield new individuals or off-
spring with inherited genes that will give solutions that are just as good if
not better than those given by their parents. This idea stems from the argument
that if a certain combination of genes yields a good solution, then the de-
scendants ought to also produce a good solution if this combination of genes
can somehow be preserved.

The primary operations for combination of genes are crossover and mu-
tation. Crossover requires two parents. The resulting chromosome of the off-
spring is a combination of the chromosomes of the two parents. Crossover is
the primary operation in genetic algorithm since it serves to preserve the
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Figure 9.1. Flowchart of the genetic algorithm.

genetic characteristics of individuals with good solutions. Mutation involves
the resulting chromosome of the offspring alone. Part of the chromosome is
allowed to mutate. This stimulates an excursion to new areas of the search
space to keep diversity in the gene pool.

The mating process produces new offspring to replenish the population so
as to maintain a constant number of individuals in the population. The new
population includes new offspring and other individuals that may or may not
have participated in the mating process, depending on the variations in im-
plementations. During the computation for each generation, the chromosome
for the best solution is always saved. The algorithm continues until the good-
ness measure for the desired solution is obtained. Occasionally, the population
loses diversity and must be restarted again. The process can be illustrated in
Figure 9.1.
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9.2.1 Genetic Representation

A key factor in the genetic algorithm is the use of genes to represent the
values of the search parameters. In this section, the chromosome for each
individual is represented by a string of binary bits. Other representations are
possible; these are covered in later chapters. The chromosome contains in-
formation related to the values of the parameters. It contains a number of
genes, each gene representing the value of one parameter. For example, given
two input variables (x, y) and the function f(x, y), the problem on hand is to
find the two parameters (x, y) that will give the minimum function value when
the input parameters are bounded within the real interval [0, 1].

There are really no unique ways to design the bit string for representing
the parameter values. Since the four parameters are all real-valued between
0 and 1, one of the easiest representations is to use the fractional bits. The
number of bits required depends on the desired resolution as specified by the
application on hand. Assume that a resolution of two decimal digits would
be sufficient for the present purpose; therefore in binary, eight bits are re-
quired for each parameter. The chromosome for each individual can now be
represented by a string of 16 binary bits:

[Xos X15 Xas X35 Xgs X5, Xg5 X75 Yoo Yis Yas V35 Yas Vss Ve Y7l

The binary bits actually represent the quantized and truncated values for x
and y.

The order of these 16 bits is not crucial; they can be placed in any order
desired. In fact, if x; and y, represent the most significant bits, it may be of
value to put the two most significant bits together and likewise for the rest
of the bits between x and y.

[X0s Yo» X15 Y1 Xa5 Ya> X35 Y35 X4 Yas X5 V55 X6s Ve X7 Y7l

For the purpose of the present example, we will continue to use the first
definition. For example, the following binary string

[0000111111110000]

represents the values 16/256 = 0.0625 and 240/256 = 0.9375 for x and y,
respectively. Likewise, the binary string

[1111000000001111]

represents the values 240/256 = 0.9375 and 16/256 = 0.0625 for x and vy,
respectively.
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9.2.2 Population

Once the chromosome has been designed, an initial population of individuals
can be generated. The size of the population remains constant in the optim-
ization process even though some individuals are being eliminated and new
offspring produced. In other words, the number of offspring produced always
balances out the number of individuals eliminated from the population. Re-
garding the initial population, there are two major concerns: the size of the
population and the coverage of the population.

Regarding the size of the initial population, the population must be rich
enough to preserve the diversity of the gene pool. It is highly desirable that
the search space be adequately represented both in the initial population and
in subsequent generations. An individual in the population serves to sample
the fitness of the search space around that individual. Hence the more indi-
viduals there are, the more completely the search space can be covered. How-
ever, if the size of the population is large, then the computational complexity
will increase at least linearly and consequently slow the generation process.
If the population is too large, then the process degenerates into a random
search, and the benefits of the genetic algorithm and its ability to learn will
be lost. Usually a population of 100 to 1,000 is used. Generally, an initial
population of 100 will do. However, if there are a lot of constraints placed
on the parameter values, then a larger population size will ensure that there
are enough offspring in each generation to keep the population afloat.

The second concern is the coverage of the population. The more com-
pletely the search space is covered, the more likely it is that the global solution
will be found. If a part of the search space has never been explored, then the
algorithm will never be aware of any solution in the unexplored space. If the
global solution happens to lie in that unexplored region, then the algorithm
will not have been successful in arriving at the optimal solution. Once the
algorithm has started, the mutation operation is an attempt to enrich the gene
pool by spawning individuals in unexplored regions.

There are two ways to generate the initial population: stochastic and de-
terministic. The simplest way is to generate bits randomly for all the chro-
mosome of the individuals. Usually a uniform random number generator is
used and the random numbers are properly scaled to represent the entire
search space. The problem with generating samples randomly is that there is
no guarantee that the search space will be covered adequately. This is partic-
ularly true when the population size is small. On the other hand, if coverage
of the search space is important, then individuals in the initial population can
be deterministically generated simply by defining a grid that will canvass the
entire search space.

9.2.3 Fitness Check and Cost Evaluation

Once the initial population is generated, the legitimacy of each individual
must be checked to ensure that it can be a possible solution. For unconstrained



9.2 BINARY GENETIC ALGORITHM 243

optimization, this step is not necessary. For constrained optimization, the con-
straints on each parameter can be explicitly checked. If an individual does
not satisfy the constraints, then the invalid individual will not be counted and
included as part of the population.

After checking for legitimacy, the next step is to evaluate the objective
function of each individual. During this step, the parameter values are com-
puted from the binary representation. The parameter values are then passed
to a function and used to evaluate the cost. The computed cost is then asso-
ciated with this individual. Note that the algorithm really does not need to
know the exact relationship of the cost and the parameters, only what the cost
is for this set of parameters. It is precisely for this property that the genetic
algorithm has found widespread usage. In many applications it is not desirable
or even possible to find the input—output relationship.

Once the cost has been evaluated for all individuals, the best solution is
found by finding the individual that matches most closely to the desired ob-
jective. In this case, since we are looking for the maximum of the function,
the function itself is the objective value. The individual with the highest ob-
jective value is the one desired. The algorithm saves the parameter values for
this individual. This set of parameters represents the best solution at this
generation.

At this point, the algorithm is similar to a random search except that the
parameter values are first generated in terms of binary strings and then con-
verted to real parameter values. For a random search, one merely continues
to generate more potential solutions, always recording the best solution found.
However, for the genetic algorithm, the power of the algorithm and the learn-
ing process comes from the next three steps.

For the present example, the problem is to find the minimum value for the
given function. The objective function can be defined as the function value.
When the cost is minimized, the function is also minimized at the same time.
Note that if the problem is to maximize the function, then the objective func-
tion can be constructed to be the negative of the function value. In this case,
when the objective function is being minimized, the function is being maxi-
mized at the same time.

9.2.4 Mating Pool

Since the objective function for each individual is known, there is a rough
idea of something about the search space. With this population of individuals
on hand, the next step is to generate more individuals without losing what is
already known about the search space and the associated objective function.
In this step, suitable individuals are chosen to be part of the mating pool. The
goal of the selection process is to choose a number of individuals to be part
of the mating pool. A number of strategies are commonly used at this point.

The simplest and most obvious strategy is to use the entire population as
the mating pool. In this case, all the individuals will be used as parents and
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all will be replaced by offspring. The danger of this strategy is that there is
no guarantee that the offspring will be better than the parents.

Since the goal is to breed those individuals with good solutions, the ten-
dency is to use only the individuals with good solutions. This can be easily
done by first sorting all individuals according to their respective cost func-
tions, then using only a percentage of the individuals at the top of the list
with the highest objective function values. The intention is to put two good
individuals together, resulting in an offspring that will inherit all the good
parts of the chromosome from both parents. At each generation, a fixed per-
centage of the best individuals can be used for the mating pool. Since the
algorithm maintains the best solution and its associated objective value, this
value can be used as a measure of the goodness of individuals in the popu-
lation. This is called the threshold scheme. For an individual to be selected
for the mating pool, the individual’s objective value must be above a certain
percentage of the best objective value.

One difficulty is that it may be possible for the entire population or most
of the individuals to have gone bad. This can be detected by checking the
objective values of the individuals in the population. If the bulk of the pop-
ulation has degenerated to a poor condition, then a restart is needed. In other
words, the entire population will be scraped and a new initial population again
generated.

While the natural tendency is to use only the best individuals for the mating
pool, it has been shown that it is also beneficial to include individuals with
bad objective values. Just because that individual is bad does not imply that
the entire region where that individual resides is bad. It is quite possible that
some part of that gene may be exactly what is needed to make a better
individual. For example, the most significant bits of a bad individual may be
incorrect and the least significant bits correct, hence the objective value will
be poor. At the same time, the most significant bits of a good individual may
be correct and the least significant bits incorrect, hence the objective value
will be higher. By combining the genes from both the good individual and
the bad, it is possible to have a perfect chromosome, at least in theory.

Another reason why bad individuals are sometimes included in the mating
pool is to keep the diversity of the gene pool. Quite often, the whole popu-
lation can converge very quickly to small variations of the same super-
individual. Hence, marriage between two individuals with very similar
chromosome can only result in offspring that also have very similar chro-
mosomes to their parents. In this case, diversity of the gene pool is important
and must be maintained.

9.2.5 Pairing

Once the mating pool has been established, mating begins with a pair of
parents in the pool. To do this, two individuals must be selected to be the
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TABLE 9.1. Computation of Cumulative Distribution Function

Chromosome Objective
Number Value Probability CDF Interval
1 8 0.5 0.5 [0, 0.5)
2 4 0.25 0.75 [0.5, 0.75)
3 2 0.125 0.875 [0.75, 0.875)
4 2 0.125 1.0 [0.875, 1.0)

parents. Given a number of eligible individuals in the mating pool, a number
of ways are available to select pairs of individuals.

The simplest way to pair individuals together is to select individuals se-
quentially. To start, the individuals in the mating pool are sorted according to
their objective values. Then pairing starts sequentially from the top. The first
individual is paired with the second one, the third paired with the fourth, and
so on. Another way is to pair the first individual with the last one in the pool
and the second individual with the second-to-last one in the pool. This ap-
proach is simple to implement and ensures that everyone in the mating pool
is used and is used once.

Another way to pair individuals together is to select two individuals ran-
domly from the mating pool and repeat the process until the desired number
of pairs has been reached. One problem with this implementation is that there
is no guarantee that everyone in the mating pool will be used. In fact, there
is no guarantee that the best individuals in the mating pool will be used for
pairing, in forming other ways survive to the next generation. Nor is it pos-
sible to ensure that an individual will not be selected more than once for
mating. To remedy the situation, once a pair has been selected, it is removed
from the mating pool. All pair selections are taken from the remaining pool
to ensure that every individual from the mating pool is used.

A third approach to mating is to favor probabilistically those individuals
that are better than the others. This is called weighted pairing, or the roulette
wheel selection strategy. This approach begins with a sorted list of the indi-
viduals according to the objective values in the mating pool. Then a proba-
bility value for each individual can be assigned by normalizing the associated
objective value of that individual by the sum of all objective values. Using
the cumulative distribution function (CDF), each individual is now assigned
an interval in the CDF. The length of the interval is different according to the
objective values. If the objective value is high for a particular individual, then
the probability of that individual being selected is high. Correspondingly, the
interval for that individual is large. For example, assume that there are four
individuals in the mating pool with their corresponding objective values. The
probability and the CDF can be computed as shown in Table 9.1.

Given a random number drawn from a uniform distribution, the interval in
the table shows which chromosome would be selected. In the event that the
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objective values are very similar to one another, the probability will be similar
and the interval will be almost the same. Another way to spread out the CDF
is to use the rank of the objective values instead of the objective values
directly.

When the mating pool is large, the above approaches are less effective.
First, sorting and ranking a large array is time-consuming. Secondly, the dif-
ferences in probability values would be minuscule. Another approach to pair-
ing is by means of tournament. When a parent is needed, a small subset from
the mating pool is randomly selected. The individual with the highest objec-
tive function wins the competition and becomes a parent. The process con-
tinues until all needed parents have been chosen.

9.2.6 Mating

In mating, the chromosomes of two individuals must be combined to produce
one or more offspring. After two individuals have been selected from the
mating pool and marked for paring, the chromosomes for these two individ-
uals can be combined to produce offspring. The two original individuals are
the parents. Newly produced individuals are called offspring. The simplest
way is for each offspring to use parts of one chromosome combined with
parts of the other chromosome to make a whole chromosome. This is called
CrOSSOVer.

In a one-way crossover operation, a single split is used to mark the location
of the exchange. Before the crossover operation, a random number is drawn
from a uniform distribution and scaled to the number of bits in the chromo-
some. This random number marks the location of the split. The first offspring
takes the first part of the chromosome before the split from the first parent
and the second part of the chromosome after the split from the second parent.
Likewise, the second offspring takes the second part of the chromosome after
the split from the first parent and the first part of the chromosome before the
split from the second parent. For example, suppose we have two parents with
the following chromosomes:

Parent A: [0000111111110000]
Parent B: [1111000000001111]

A random number is selected to mark the location of the split. Assume that
the split location is between the fifth and sixth digit as marked by the sepa-
rator. The offspring thus produced would be as given below:

Parent A: [00001[11111110000]
Parent B: [11110/00000001111]
Offspring A: [00001]00000001111]
Offspring B: [11110]11111110000]

There is really no reason why only two parents are used to produce two
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offspring. The same technique can be used for more than two parents to
produce more than two offspring. For example, if three parents are used, then,
keeping the first part of the first chromosome, the second part can be ex-
changed with two other parents. Likewise, keeping the first part of the second
chromosome, the second part can also be exchanged with two other parents.
Also keeping the first part of the third chromosome, the second part can also
be exchanged with two other parents. Carrying out these crossover operation
with three parents yields a total of six offspring:

Parent A: [00001|11111110000]
Parent B: [11110/00000001111]
Parent C: [10101/01010101010]
Offspring A: [00001|00000001111]
Offspring B: [00001/01010101010]
Offspring C: [11110[11111110000]
Offspring D: [11110]01010101010]
Offspring E: [10101]11111110000]
Offspring F: [10101/00000001111]

In a two-way crossover operation, two splits are used to make the
exchange. The two splits mark the pieces of chromosome to be exchanged.
Before the crossover operation, two distinct random numbers are drawn from
a uniform distribution and scaled appropriately. The first offspring takes the
chromosome from the first parent but exchanges the chromosome piece
marked by the two splits from parent B. Likewise, the second offspring takes
the chromosome from the second parent but exchanges the chromosome piece
marked by the two splits from parent A. This operation is illustrated below.
Using the same two parents as the previous example, assume that the split
now occurs at the fourth and tenth bit.

Parent A: [0000[111111|110000]
Parent B: [1111/000000/001111]
Offspring A: [0000]000000|110000]
Offspring B: [1111|111111]{001111]

It is possible to use additional splits to exchange more pieces of the chro-
mosome. It is not clear whether more splits and exchanges in the chromosome
would increase the efficiency of the process other than merely increasing the
computational complexity.
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9.2.7 Mutation

While mating is analogous to bisexual reproduction requiring two parents,
mutation is analogous to asexual reproduction involving a single parent. Off-
spring produced by mating inherit chromosomes from its parents. When the
parents have many common genes, then the offspring will also contain many
common genes. This condition occurs quite often. As the population evolves,
quite often the entire population gradually becomes stale, with all individual
having close to the same genetic makeup. Since all the individuals are so
similar to one another, very little additional learning can be gained. In order
to keep up the diversity of gene pool, the mutation operation is employed.
Mutation is a way to produce offspring that will contain genetic material not
contained in the chromosome of their parents. Mutation causes an offspring
to explore areas not covered by the search space of the current population.

One of the simplest mutation operations is a single-bit complement oper-
ation. In this operation, a single bit of the chromosome in the selected off-
spring is complemented. Take a random number and scale it properly. This
random number marks the location of the bit in the chromosome, and one
simply complements the selected bit. For example, if an offspring produced
by the crossover operation has the following chromosome:

Original offspring: [0000000000110000]

Assume that the random number obtained points to the eighth bit. Since the
eighth bit was originally a 0, the complement of that bit is 1. The chromosome
of the mutated offspring is as follows:

Mutated offspring: [0000000100110000]

A bit change in the least significant bit of a gene would not cause much
change in the parameter value. A bit change in the most significant bit of the
same gene would cause significant change in the parameter value.

Using the same approach, one can also have multiple bit mutation also.
One simply selects multiple random numbers and complements the corre-
sponding bits. For more random effects, one can also use random number to
select the number of random bits to mutate. Depending on the length of the
chromosome, a single bit may not be sufficient to cause offspring to mutate
enough to begin explorations in new areas of the search space. In this case,
multiple-bit mutation would be needed.

Not all offspring are submitted to mutation. Only a small percentage of
the offspring is submitted to the mutation operation. This percentage is called
the mutation rate. In normal conditions, the mutation rate is kept small. Excess
mutation rate defeats the purpose of crossover and inheritance. Excessive
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mutation rate causes the algorithm to degenerate into random search with
little learning from generation to generation.

9.2.8 The Next Generation

After mating and mutation, a new set of individuals or offspring has been
added to the population. Some of the offspring could represent a better so-
lution than what is known up to the present time. Most of the time, the
offspring represent variations of their parents. These new offspring are now
checked for legitimacy and fitness. Any offspring that do not satisfy the con-
strained requirement are immediately eliminated from the pool. In some im-
plementations, any new offspring produced are immediately checked for
legitimacy and eliminated when they do not satisfy the constraints. In this
way, only legitimate offspring are added to the population.

At this point the population now contains three types of individuals: par-
ents, unused parents, and offspring. The population size is twice or more than
the original. Some individuals must be retired from the population in order
to keep the population constant. A number of strategies have been proposed
for culling the pool.

One method is to retire all parents and use the offspring instead. This
method is simple to implement. Any time when two parents are used to
generate two offspring, the parents are immediately eliminated from the pool,
to be replaced by the offspring. The question remains as to whether the off-
spring are better than parents. If two seemingly good parents produce two
bad offspring, then the genetic material of the two good parents will be lost.

A second method is to let the parents and offspring compete according to
the objective values. In other words, the new population with all parents,
unused individuals, and new offspring is sorted and the top half of the pop-
ulation is kept. Any individuals with objective values below a threshold are
discarded. This method ensures that there is always a good set of individuals
to be used for breeding.

After the population has been culled back to the original size, the best
solution is compared with the saved solution. If the new best solution is better
than the saved solution, then the new best solution is saved along with the
chromosome information as the saved solution. This saved solution represents
the best solution up to this generation. The intelligence of everything learned
up to this point is contained in the individual chromosomes of the current
population.

If the best solution at this point is satisfactory, then the algorithm termi-
nates. If additional time is allowed, the algorithm repeats itself for another
generation. As generations progress, it is expected that the best solution up
to that point will get better and better. Since at any generation the best solution
is kept, one always has the best solution up to that point, regardless of whether
that best solution comes from the first generation or the latest generation. In
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other words, the best solution is the best and will not be worse than any
solutions found up to that point. However, as is typical of other iterative
schemes, the convergence rate may slow considerably as time progresses.
Initially, it does not take too many generations for the best solution to become
a good solution. However, as the algorithm continues, it is often observed
that more and more generations are required before a new best solution is
found. Furthermore, the new best solution found may not be significantly
better.

A number of stopping strategies have been proposed. The simplest way to
stop the algorithm is when the best solution is good enough. This is somewhat
subjective and highly dependent on the application. In the case where one is
trying to locate the root of a polynomial, with the best solution providing a
polynomial function value that is within e of 0, this error condition can be
used to stop the algorithm. However, if we are trying to find the maximum
or minimum value for a particular function, there is no hint a priori what the
maximum or minimum value would be. In this case, it is extremely difficult
to set the stopping criterion according to the function value.

Another way to set the stopping criterion is to allocate a fixed number of
generations. This is often used when there resources are limited and the best
solution is sought within the allocated time frame. This strategy is easy to
implement.

A third way to arrive at a stopping criterion is to observe intrinsically
within the algorithm in terms of improvements in the best solution. As ex-
pected, the best solution improves quickly initially and the improvement be-
comes less dramatic as the algorithm progresses. This is measured by the
convergence rate. Traditionally, the convergence rate is defined as the average
change in mean squared error as a function of generation number. It is usually
defined as the slope of the mean squared error curve as a function of the
generation number. For genetic algorithm, convergence rate can be estimated
by the ratio of the percentage of improvements in the objective value over
the number of generations since the last update. As the improvement slows
down, the convergence rate decreases. When the convergence rate falls below
a threshold value, the stopping criterion is said to have arrived.

9.2.9 Performance

How well the algorithm performs depends on a wide variety of factors. One
of the most important factors is the representation of parameter values. If the
representation adequately reflects the problem on hand, the problem of con-
vergence to the best solution is made simpler. If the search space is linear,
then the parameter values should be represented in a linear fashion. If the
parameters have a nonlinear effect on the objective values, then a nonlinear
representation of the parameter values may work better.

Once an appropriate representation has been decided upon, the efficiency
of the algorithm depends on the population size. The larger the population
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size, the more the search space is covered and searched. This often leads to
better solutions quickly. However, if the size of the population is excessively
large, the computational complexity can also be excessive. On the other hand,
the population size should not be too small, or the lack of genetic diversity
will cause the population to converge to a superindividual very quickly. In
this case the algorithm has not been given the opportunity to explore the
search space to discover where potential solutions lie.

Another crucial factor in performance is the number of generations. Even
though the algorithm tends to retain the traits that give good solutions, the
chromosome pieces must first be discovered before they can be retained. The
discovery process comes from the crossover and mutation operations. This
means that sufficient generations must be given to the algorithm so that it has
time to explore the search space to look for a good solution. On the other
hand, excessive numbers of generations tend to be unproductive. After the
algorithm has sufficient generations to converge, the nature of the algorithm
is to retain the top individuals. Soon the entire population becomes descen-
dants of a single superindividual with very similar genetic material. Further
generations would only encourage inbreeding but in reality produce no new
information. At this point, a restart is needed with a new initial population.
To avoid further occurrences of this situation, the mutation should be in-
creased to provide more genetic diversity.

Another factor in the performance is the inclusion of individuals with bad
solutions in the mating pool. The tendency of the algorithm through the cross-
over operation is to eliminate individuals with bad solutions and keep only
individuals with good solutions. After a small number of generations, the
population tends to converge to same superindividual. Increased mutation rate
helps to maintain the diversity of the genetic pool. Another method is to allow
a certain percentage in the mating pool for individuals with bad solutions.
Even though an individual may have bad objective values, this does not imply
that all bits in the chromosome are unacceptable. Hence keeping a small
percentage of individuals with bad objective values provides the diversity for
the algorithm to continue searching.

9.2.10 Enhancements

Many enhancements have been proposed in the literature in an effort to in-
crease the performance of the algorithm and speed up the convergence rate.
Many of these improvements appear as different strategies to be implemented
in different parts of the algorithm and have been covered in previous sections.
In this section a number of general strategies are covered.

Individuals in a population represent a certain portion of the search space.
After a number of generations, the elimination of the nonperforming individ-
uals tends to restrict the search space to a local region represented by a
superindividual. At that point, subsequent generations would only further con-
strain the search region more and more narrowly within the local region. The
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algorithm is unproductive at that point. If the convergence rate parameter is
used as a stopping criterion, then the algorithm will stop. If the local region
is a local minimum, then the problem is far from being solved. A new restart
is needed to move the algorithm to another part of the search space in the
hope of locating a better solution.

Another strategy is to start with multiple initial populations. There is no
reason why the algorithm should only have a single population. If each pop-
ulation represents a search in a local region, then multiple populations mean
multiple local regions are being searched at the same time. In the spirit of
competition among multiple individuals in the same population, there is no
reason why multiple populations should not also compete among themselves
for the best solution. When the algorithm begins, multiple populations are
generated. Each population is allowed to evolve for awhile. Then the best
solution for each population is compared and those populations with good
solutions are allowed to evolve further. Those populations with poor solutions
are eliminated in favor of new populations. The advantage of this strategy is
that more of the search space can be explored simultaneously.

In order to maintain genetic diversity, a rate schedule can be used to give
different rates at different stages of the algorithm. Initially, the goal of the
algorithm is to explore the search space. At this point, a high mutation rate
is used to encourage the population to spread out in the search space. Towards
the end of the algorithm, the mutation rate is reduced so that the algorithm
can converge to a solution.

Another strategy is to use the concept of simulated annealing. Initially, the
temperature is set high. Correspondingly, the mutation rate is set high and
the crossover rate low, so that the algorithm has a chance to explore the search
space. Towards the end of the optimization process, the temperature is grad-
ually reduced so that the mutation rate is low and the crossover rate is high.
This allows the optimization process to settle on the selected solution.

9.3 CONTINUOUS GENETIC ALGORITHM

In the previous section, a string of binary bits was used as the basic building
block for the genes. In this section, the technique for binary genetic algorithm
is extended to the case when the genetic representation is based on continuous
parameters. In principle both strategies are similar and consequently the al-
gorithm works in similar fashion. However, the change in representation from
binary to continuous variables necessitates some subtle changes in the oper-
ations. These changes are covered in detail in this section.

In principle, the genetic algorithm for the continuous case is the same as
that for the binary case. The algorithm starts with an initial population. Then,
the fitness of the population for each individual is computed according to the
objective function. Based on the objective values, the population is trimmed.
Then, according to the associated objective values for each individual, the
mating pool is created. From the mating pool, pairs are selected for mating.
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At this point, the strategies mentioned for the binary genetic algorithm in the
previous sections are also applicable. Once the pairs are selected, the mating
process begins. The mating operations for the continuous case are different
and will be discussed in later sections. The mating operations for the contin-
uous parameter case are also different. Once offspring are produced, the fit-
ness of the offspring is calculated and the population is trimmed back to the
original size. This part of the algorithm is the same as the binary case.

9.3.1 Genetic Representation

In most optimization problems, the parameter variables can be categorical or
numerical. If the variable is categorical, then the representation can be rep-
resented in binary or by integers. Suppose the variable can take on one of
five different categories. It can then be represented as follows:

Binary: 00001, 00010, 00100, 01000, or 10000
Integer: 1,2,3,4,5

Note that in the binary case there are actually 2° = 32 possible combinations
of those five bits and only 5 of them are valid. This means that many of the
offspring would be invalid because the coding of those five bits does not
result in one of the 5 legitimate codes above. However, using the integer
format, it is simple enough just to constrain the parameter value to be integer
and that the integer value is between 1 and 5.

If the parameter value is real, then the binary representation can only be
quantized and represented within the resolution depicted by the number of
bits allotted in the gene. If more precision is needed, then the number of bits
must be increased. Alternatively, a two-stage strategy can be used. Start with
an initial representation with a certain number of bits for the parameter values.
When the algorithm converges, start another genetic problem with a different
representation using the results from the first. For example, given the two-
variable function f as a function of x and y. The problem is to find the
maximum of the function and the corresponding values of x and y with 32-
bit precision. As specified by the application, one can design the genetic
representation for x and y with 32 bits. Alternatively, one can use a two-step
process. In the first step, design the genetic representation for x and y with
16 bits. Even though the genetic representation does not have sufficient res-
olution, the algorithm would converge much quicker than if 32 bits were used
for representation. As a second step, the problem can now be recast to finding
the maximum of the function given that the most significant bits of x and y
are specified by what is found in the first step. This is really the same problem
except that the interval for x and y has been significantly narrowed.

The multiple-step procedure is needed because the genetic code is repre-
sented as strings of binary bits. However, if the genetic code is represented
by real numbers, it is not necessary to have multiple steps, because the real
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number can be represented by the maximum precision allowed in the com-
puter. For the problem of locating the minimum of the function, the genetic
code would merely be two real numbers:

[x, ¥]

Clearly, this representation is concise and simpler than the representation
based on strings of binary bits.

Suppose the problem on hand is to find the maximum value of a four-
variable function g. The input parameters are w, x, y, and z. The variables are
bound between the 0 and 99. In other words, each variable requires two
decimal digits. Using the continuous parameter representation, the chromo-
some for this example can be represented as a four-variable quartet:

w, x, y, z]

9.3.2 Mating

In the binary case, the primary mating operation is the one-way and the two-
way crossover operation. The crossover operation produces offspring that in-
herits the genetic code from both parents. In the continuous case, there are
no binary strings that can be split into two or more parts for exchange. If the
chromosome is composed of many variables, then the crossover operation can
still be applied. However, there are other techniques that are more suited to
operations with continuous variables. Many of these techniques are reviewed
by Adewuya [1] and Michalewicz [66].

A simple crossover operation for continuous case is the same as the binary
case. In a one-way split, a random number is generated and properly scaled
to the number of variables in the genetic code. This random number is used
to mark the split location. The offspring are generated by swapping parts of
the chromosome as before. Assume that the chromosomes for the two parents
are given below and assume that the split location is after the first parameter.
The offspring thus generated would be given below:

Parent A: [1, |2, 3, 4]
Parent B: [90, |91, 92, 93]
Offspring A: [1, |91, 92, 93]
Offspring B: [90, |2, 3, 4]

While this technique works for the binary case, it only works in a limited
capacity for the continuous case. It is obvious from the example that two
offspring are produced each inheriting the genetic code from its parents. The
algorithm could proceed from this point on. However, after a few generations
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it is obvious that every individual in the population contains permutations of
the same few parameter values (1, 2, 3, 4, 90, 91, 92, 93). In other words,
while the crossover operation produces permutations of the parameter values,
it is not able to generate new parameter values that are not part of the original
set. This places a severe limitation on the efficacy of the algorithm. The same
crossover operation can be extended to multiple splits. The swapping opera-
tion is the same as the binary case. The difficulties remain the same, however.

Note that if the parameter values are swapped in this manner and as long
as the parents contain legitimate values for each parameter in its proper place,
the offspring will also be guaranteed to contain legitimate values for each
parameter. This is true because the swap leaves each parameter in place. This
is a very desirable property for the crossover operation.

In order for the algorithm to be efficacious, it is necessary to generate
values that are not in the original population. This strategy is called the linear
interpolation scheme. It can be done by combining the values of the parents
using a functional relationship so that new values can be generated. One such
function is the linear interpretation method:

Pnew:BPA+(1_B)PB

where the values of B ranges from O to 1. The value of B controls how much
P, contributes to the new parameter value and the value of (1 — B) controls
how much Pj also contributes to the new parameter value. The value of B is
randomly generated for each parameter at each step. Using the same values
for the parents, assume that the four 8 values have been randomly generated
and are 0.1, 0.2, 0.3, 0.4, respectively. The resulting offspring would be as
follows:

Parent A: [1, 2, 3, 4]
Parent B: [90, 91, 92, 93]
Offspring: [81.1, 73.2, 65.3, 57.4]

The above operation produces one offspring. To get another offspring, another
set of B values must be generated again. There is no particular reason to link
one offspring with another.

While the linear interpolation scheme is adept in generating new values
for the offspring based on the values of the parents, it is clear that this is an
interpolation and therefore the generated values could never be outside the
values given by the parents. This is clearly a problem because the operation
cannot extrapolate to values outside the interval bounded by the values of the
parents. Many suggestions have been proposed to remedy the situation. An
obvious solution is an extrapolation scheme, in which the value of B is al-
lowed to be outside the interval of [0, 1]. As long as B is constrained to be
within the interval [0, 1], the resultant value is guaranteed to be valid. How-
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ever if B is allowed to take on values outside the interval, then the resultant
parameter value may or may not be valid anymore. As an example, if the
values of the two parents take on the minimum and maximum allowable
values respectively, then no value of B outside the interval [0, 1] will yield a
valid value. On the other hand, if the two values of the two parents take on
the same value, then no value of B within the interval [0, 1] will yield any
value that is different than that for the parents. This is clearly a problem for
the linear interpolation scheme.

Wright proposed a slightly different form of the linear extrapolation for-
mula to allow for values outside the interval governed by the parents [105].

P = BP, — Pp) + P,

The value of B is still chosen to be in the interval between O and 1. However,
if B =0, then P, = P,, butif 8 = 1, then P, = 2*¥P, — Pj. In the latter
case, the value generated is outside the interval [P,, P;]. Eshelman and Schaf-
fer proposed the blend crossover (BLX-a) [27]. The parameter a determines
how far the extrapolated value can stray. Before the interpolation crossover
operation is carried out, the values of the parents are extrapolated by a factor
of a. Then the interpolation operation produces offspring using the extended
range of the parents.

9.3.3 Mutation

In the binary case, mutation is obtained by randomly complementing a bit in
the binary string. This scheme clearly does not apply for the continuous case.
The object of the mutation operation is to introduce new genetic material to
force the algorithm to explore new search space. Hence, any scheme that
would generate a new value would work.

The random exchange scheme is the easiest one to implement. Given the
chromosome for a particular individual, the random exchange scheme simply
replaces randomly one of the parameters with another random value. Select
a random number and properly scale the magnitude to the number of pa-
rameters in the chromosome. Select another random number and scale the
second random number to be within the interval for that parameter. Replace
the parameter in the chromosome with the new random value.

If there are many parameters in the chromosome, then a single mutation
may not be sufficient to send the individual to an unexplored search space.
If so, multiple mutations can be applied to the chromosome so that more than
one single parameter is changed and mutated.

9.3.4 Performance

In principle, factors affecting the performance of the continuous genetic al-
gorithm are similar to those for the binary genetic algorithm. De Jong did a
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comprehensive study of the effects of various parameters on algorithm per-
formance [20]. From the simulation results, De Jong concluded that small
population size improves the initial performance while large population size
improves the long-term performance. This is not surprising. When the pop-
ulation size is small, convergence is rapid, hence giving good performance
quickly. However, because the population size is small, there is insufficient
material to explore the entire search space, hence it is easy to get trapped in
a local minimum instead of a better local region given a better opportunity
to explore a wider search space.

De Jong also concluded that high mutation rate leads to good off-line
performance while low mutation rate leads to good on-line performance. Off-
line performance is measured by the best objective function value up to the
present generation. On-line performance is measured by the average objective
function value for all objective function evaluations. De Jong’s result is not
surprising. When the mutation rate is high, the algorithm is exploring all over
the search space looking for the best local minimum region. Consequently,
the off-line performance is poor, but the payoff comes from the ability to
locate a better local region to converge to. That comes from the sacrifice of
a lot of function evaluations. On the other hand, when the mutation rate is
low, a solution is reached quickly with not much exploration of the search
space, hence the on-line performance is good but the off-line exploration is
poor because of the lack of opportunity to explore.

A surprising result from De Jong’s experiment is that the type of crossover
operations does not affect much of the results. Furthermore, the crossover rate
should not be too high or too low. If the crossover rate is too high, the
algorithm will bounce around without converging. If the crossover rate is too
low, then, convergence is quick but the performance is subpar.

While not many formal studies have compared the use of binary genetic
algorithms to the use of continuous genetic algorithms, the experience of
many researchers has confirmed that using continuous representations gen-
erally gives better performance than the binary case [37]. Furthermore, al-
gorithms using the continuous representation tend to converge much faster
than algorithms using the binary representation.

9.3.5 Enhancements

Since the proposal of genetic algorithms back in the 1970s many enhance-
ments have been proposed in the literature in an effort to fine tune the al-
gorithm. In this section, a number of these enhancements are covered.
While the basic algorithm is rather simple to implement and the logic for
the generations is rather easy to program, for many applications the main
bottleneck lies in the computation of the objective function. For example,
consider an application of applying a genetic algorithm to scheduling. The
genetic algorithm is capable of generating many potential schedules very eas-
ily. What is not so easy is to evaluate the goodness of each schedule gener-
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ated. To arrive at a goodness measure, an external program is needed to
generate the actual schedule, check to be sure that all constraints are satisfied,
and then evaluate the schedule according to established guidelines. For this
reason, it is not uncommon, while using genetic algorithm to search for a
solution, for most of the computation time to be spent in evaluating the ob-
jective function of different individuals in the population. Any savings in
reducing the number of objective function evaluations translates directly to
reduction in the search time or complexity.

One proposal is to eliminate duplicate evaluation of the objective functions.
This approach has been proposed by Michalewicz [66] and Davis [19] During
the crossover operation, it is unusual for offspring to be identical. This is
particularly true when the population begins to converge to a superindividual.
Significant time can be saved if identical offspring are spotted and identified.
In order to identify twins, it is necessary to check the entire population to see
if the same pattern exists. If so, then the objective function is known and the
objective function evaluation can be eliminated. Note that identical twins may
occur not only among new offspring generated in the present generation but
also with parents in the population. In an extreme case, it is possible that the
same chromosome has been evaluated before but the chromosome pattern has
been eliminated in earlier generations. This means that the algorithm must
keep a list of all objective function evaluations. As the generations progress,
the list will continue to grow. A point will come when it will be necessary
to determine the amount of time in searching a long list versus the amount
of time required to perform a single function evaluation.

For some applications, even a single evaluation of the objective function
can be extremely time-consuming and complex. If the landscape of the ob-
jective function is relatively smooth, then a local interpretation of the objec-
tive function could save a significant amount of time. This technique was
proposed by Haupt [36]. Before the algorithm starts, a uniform grid is defined
on the search space and the objective function values are evaluated for the
grid points. These evaluations provide a coarse estimate of the landscape.
When a new offspring is generated, the objective function is not actually
evaluated precisely. Rather, the objective function is estimated by interpola-
tion from the landscape, from the neighboring points closest to the desired
chromosome. While this approach may not produce a solution, due to the
imprecise estimate of the objective function, the approach can be used to
narrow down the search space rather quickly.

When the algorithm begins to converge, it is often observed that the in-
dividuals in the entire population gradually become very similar to one an-
other. When this happens, the algorithm loses its power to explore the search
space, due to the lack of genetic diversity. To remedy the situation, Michal-
ewicz [66] proposed attaching a lifetime to each individual. Each individual
is allowed to live for a minimum amount of time and is not allowed to live
beyond a maximum amount of time. The implementation of a lifetime ensures
that no superindividual is allowed to persist and permeate throughout the
population for an indefinite amount of time.
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9.4 EVOLUTIONARY PROGRAMMING

Evolutionary programming is an approach based on simulated evolution
and is similar in operation to genetic algorithms [30]. Rechenberg [86] and
Schwefel [91] have also developed a similar technology, called evolution strat-
egies. The basic principle of evolutionary programming arises from the
observation that evolution involves reproduction, mutation, competition, and
selection. Fogel argued that natural selection occurs not according to the
genetic materials (genotype), but according to the expressed and exhibited
behavior (phenotype). In genetic algorithms, coding structures are called chro-
mosomes. These coding structures are manipulated directly by crossover and
mutation operations. In evolutionary programming, coding structures are
rather abstract structures, which are primarily modified by the mutation
operation to produce new behaviors.

9.4.1 Evolutionary Strategies

The evolutionary strategies (ES) approach was developed by Rechenberg [86]
and Schwefel [91]. It was initially designed to solve optimization problems
involving real-valued problems. The process can be summarized as follows:

1. Define an objective function for the problem.

2. Define a coding strategy for representing the solution. Typically the
representation is a series of real numbers.

Randomly initialize a population of individuals.
Compute the objective function values for all individuals.
Generate offspring by mutation.

Compute the objective function value for each offspring.
Select a set of individuals with good solutions.

Repeat step 5 unless stopping criteria are met.

® NNk Ww

From the above flowchart, it can be seen that the process is similar to
genetic programming, with the distinct difference that there is no mating. The
primary operation for producing offspring comes from mutation. This is de-
noted as a (1 + 1) — ES, where 1 + 1 indicates one parent giving one
offspring. The operation was later extended to multiple parents and multiple
offspring. The extended approach is denoted by (u + A) — ES, i.e., u parents
are used to product A offspring. The process is called recombination. In the
competition, all (w + A) individuals are involved in the competition for natural
selection.

In the evolutionary strategies approach, mutation is performed by Gaussian
perturbation to the parameter values. Note that the perturbation is applied to
all parameters. It is argued that behavioral traits are affected by more than
one gene. Hence the perturbations are applied to all the parameters. Recom-
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Figure 9.2. A finite state machine.

bination is performed by exchange (crossover) and linear interpolation. Note
that the primary search operation is through mutation. Recombination is added
only to accelerate the search.

In the natural selection process, the best solution is always kept. In the
(1 + 1) — ES case, only the best solution is kept, regardless whether it is the
parent or the offspring. In the (u + A) — ES case, the best w solutions are
kept out of the A offspring. All parents will be replaced by the best offspring.

9.4.2 Evolutionary Programming

The evolutionary programming (EP) approach was developed by Fogel as
early as 1962 [28]. The goal of EP is to simulate evolution as a learning
process. The basic concept is to learn to predict the environment and to trans-
late what has been learned to formulate a suitable response towards the spec-
ified goal. The basic mechanism for this prediction is a set of finite state
machines (FSMs). A population of FSMs is evolved that can provide better
predictions of an environmental sequence towards a given goal. An FSM is
shown in Figure 9.2.

In the broadest sense, evolutionary programming defines an environment
as a sequence of symbols taken from a finite alphabet. From this given in-
formation, the problem is to predict future symbols based on what is already
known. It is reasoned that not all correct predictions contribute equally to the
same learning. Likewise, not all errors carry the same penalty. In other words,
the cost function can be modeled by a cost matrix, which defines the goal.

A finite state machine is defined by a set of states and transitions to and
from the set of states. An FSM is defined by a state transition diagram. The
current status of the environment is represented by the current state of the
machine. Upon an input, the machine will transition to another state as gov-
erned by the state transition diagram. The following figure shows an FSM in
terms of its state transition diagram.
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In the state transition diagram, a state is marked by a circle and a transition
is marked by an arc. All transition is identified by a doublet (input/output).
The base of the arc is the current state. The head of the arc is the next state
or the new state. The doublet notation indicates that when the specified input
is received, the FSM will transition from its current state to its next state with
the specified output. In much of the digital logic literature this is called a
Mealy machine.

The basic process for EP is as follows:

1. Choose the symbolization, i.e., the symbols that appropriately describe
the environment.

2. Determine the maximum number of states for the FSM.

w

Select the population size.

4. Create random machines with random initial states. Each input symbol
has corresponding randomly selected state transitions and output states.

A flowchart of this process is shown in Figure 9.3. The above formulation
requires no a priori information, although if such information is available
what is known can be programmed directly into the FSMs.

Initialization. Initially, the observed environment must be coded as a se-
quence of symbols. Based on the application on hand, the alphabet is defined
and the symbol sequence is defined according to the problem. In EP, the actual
representation of the symbols is not important as long as the representation
is unique and can adequately represent the problem space, the observed en-
vironment.

After the symbols for the environment have been defined, as part of the
initialization an initial population must also be generated. Each individual in
the population is an FSM. Each initial FSM is generated with a random
number of states, with random transitions, and with random outputs for each
transition. In addition, each FSM is also given a random starting state.

Fitness Evaluation. This sequence of symbols is next fed to each FSM. Each
FSM has been initialized already with a certain starting state. From the given
symbol, the next symbol is predicted and compared with the sequence. After
the entire sequence is fed, the fitness of each FSM is evaluated in its ability
to predict by counting the number of correct predictions. The actual objective
function value is determined by the cost matrix based on the number of
correct predictions.

Competition and Selection. After the fitness evaluation, the next step is to
trim the population. This is synonymous with selecting the parents for the
next generation. The selection can be accomplished either deterministically
or stochastically. In the deterministic approach, the best individuals are kept.
Both the parents and the offspring participate in the competition.
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Figure 9.3. Flowchart of the EP process.

In the stochastic approach, those solutions with greater fitness are given
more chance to survive than those with lesser fitness. Some of the solutions
with lesser fitness should also be allowed to propagate to keep the diversity
of the pool. This is done by performing a pairwise competition conducted in
a round-robin format. In a pairwise competition, the competition is limited
only to neighboring individuals. Hence, some less fit individuals will still
survive. At the same time, learning is present due to the competition.

Next Generation. After the competition, the population is brought back into
the proper size. The best solution is saved. If the best solution is within the
accepted tolerance, then the algorithm stops. If the number of generations
exceeds the maximum number allowed, then the algorithm also stops. If not,
the algorithm is allowed to proceed.
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Population Generation. To generate offspring for the next generation, the
main operation used is mutation. The goal of mutation is to improve the
performance of the FSMs. Changes to FSM can be applied on any parts of
the machine. There are five obvious places for mutation:

Change the output symbol.

Change the state transition, the arc.
Add a state.

Delete a state.

Change the start state.

AEEI S

Each one of the above changes can cause significant change in the output
sequence and hence the prediction accuracy. These changes are probabilisti-
cally applied during the mutation process. Variations of the EP approach
include the use of multiple mutation operations.

9.5 SUMMARY

In this chapter, two similar and competing technologies, genetic algorithm
and evolutionary programming, have been discussed. In operation, both tech-
nologies appear to be quite similar. There are a number of similarities between
them. But in principle there are significant differences between the two.

In terms of similarities, both GA and EP use a population of individuals
to explore the search space. Each individual represents a potential solution as
well as some arrangement of the search parameters. An objective function is
used to evaluate the fitness of each individual. The objective function is ap-
plication dependent and problem dependent. Some individuals yield good so-
lutions as measured by the objective function, while others yield poor
solutions. In both GA and EP, offspring are generated. The generation of
offspring is the primary mechanism used in the search for a better solution.
In both technologies, some selection mechanism is also used to cull the pop-
ulation.

In terms of differences, in principle, GA is a simulation of evolution on
the genetic level, while EP is a simulation of evolution on the phenotypic or
behavioral level. In the early stage of GA development, chromosome repre-
sentation is primarily by binary strings. This is not true in later stage. GA
has been extended to the continuous-variable case. On the other hand, EP has
always been developed using real-valued parameters. In GA, reproduction is
primarily due to crossover operations and some mutation operations to pre-
serve genetic diversity. In EP, the primary reproduction is due to mutation
with crossover operation for speedy convergence.
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INTELLIGENT STRATEGY
GENERATION IN COMPLEX
MANUFACTURING
ENVIRONMENTS!

10.1 INTRODUCTION

Numerous applications exist in which the solution methods and outputs con-
tain a language that is foreign or difficult for the end user. In addition, many
real-world environments have time-varying constraints and objectives. Many
of the time-varying objectives may run counter to others. Typical of this
description is a manufacturing environment in which products are being fab-
ricated to meet a set of orders, commonly referred to as a job shop. In this
setting, materials, facilities, and personnel are the primary resources and
should be appropriately utilized for achieving maximum profitability. Empha-
sis is often placed on finding optimum product sequences to achieve one or
more (often conflicting) objectives: maximum throughput, maximum revenue,
maximum machine utilization, fewest missed ship dates, and so on. Models
and methods often consist of linear (integer) programming, stochastic linear
programming, dynamic programming, queuing theory, heuristics, and sto-
chastic simulation [41, 70]. For some settings, these methods may not provide
an acceptable solution due to several difficulties, namely (1) unavailability of
model parameter data, (2) computational time necessary for solution gener-
ation, (3) inability to quantify pertinent elements or constraints, (4) solution
regeneration in real time if an operational deviation or environment change
occurs, or, in the case of stochastic simulation, if the solution represents the
long-run average, it may not reflect current shop conditions.

'This chapter contributed by Monte P. Tull, School of Electrical & Computer Engineering, Uni-
versity of Oklahoma, Norman, Oklahoma.
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Model flexibility is an advantage in real applications such as manufacturing
processes. Rapidly changing priorities (daily, perhaps even hourly) may be
common. External customer pressure, order alteration, personnel and machine
availability, part shortages, quality problems, and transportation difficulties
are a few of the reasons for production plan deviations. A model that easily
accounts for these conditions and provides a timely updated production plan
is a valuable tool. Permitting the user to control and dynamically alter objec-
tives is a beneficial model attribute. This capability is necessary for off-line
studies and may be essential for real-time applications if current process con-
ditions are to be considered. Difficulties can arise for process managers in
attempting to relate business objectives to production schedules and se-
quences, such as dispatching rules. The three-stage model presented here per-
mits user manipulation of business objectives via a fuzzy logic model and
generates a near-optimal production plan using an evolutionary programming
algorithm (EA) and an agent-based simulation model for determining fuzzy
input parameters. The model can be applied in less complex environments
without the simulation step, but typically a process simulation or translator
stage is required to map the EA output into the fuzzy evaluator.

Agent-based modeling methods provide a means for representing both in-
ternal and external parameters that affect a process and constitute one method
for providing an evaluation of the EA output and translate results for input
to the fuzzy evaluator [9]. Generally, agents are goal oriented and interact,
constructively or destructively, with other agents. Interaction among agents is
defined by rules or functions. Emergent behavior of the system is often ob-
servable even from very simple agents and interaction rules. The Swarm sim-
ulator is an agent-based software package that can be used to develop models
of simple or complex processes [98]. Applying this methodology to a man-
ufacturing process allows both internal and external process parameters to be
represented as agents. Various types of agents are required. A resource agent
represents labor or a machine. Product agents represent the various products
that are manufactured. External agents that interact with product and resource
agents may represent management or expediting pressure, worker attendance,
machine breakdown, and machine maintenance. Each agent is an object pos-
sessing attributes that determine its actions and reactions with other agents.

10.2 MODEL DESCRIPTION

Combining simulation with artificial intelligence and genetic algorithms has
been proposed as an optimization and scheduling tool [48, 85]. Kewley sug-
gested a decision support model for battlefield settings termed fuzzy-generic
decision optimization (FGDO) [51]. A similar approach is used here for a
manufacturing environment. A high-level view of the proposed model is
shown in Figure 10.1. Initial condition inputs are supplied manually or au-
tomatically. Manual input can be used for off-line studies; automatic loading
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Figure 10.1. High-level model.

is necessary for real-time execution. It is very common for modern factories
to have automated product tracking and process state parameters. Process
managers supply user objective parameters to the fuzzy logic evaluator. To
accomplish this, the user can adjust the fuzzy logic membership functions or
modify the fuzzy rule base. These actions are discussed in Section 10.5.

A primary advantage of the model is that it permits the process managers
to determine the production plan using business objectives rather than re-
quiring them to specify or interpret operations research types of production
rules. Further, the business objectives are stated using fuzzy functions that
permit visualization of the relative importance of each objective. It is believed
that process managers can make better decisions using business objectives
rather than production rules. Process-management decisions based on pro-
duction rules may lead to myopic local optimization within the various pro-
cess steps and fail to achieve overall acceptable performance. With the genetic
algorithm evolving the production rules and the resulting schedule, the pro-
cess managers need only evaluate the outcomes. Business objectives are cast
as fuzzy membership functions that can be altered by the process-mangement
team. Example fuzzy functions are the number of late orders, throughput,
machine utilization, back-schedule size, and production interval. For a given
rule set generated by the genetic algorithm, the simulation will compute these
parameters and pass them through for evaluation by the fuzzy model. The
fuzzy model assesses how well the rule set meets the objectives by assigning
a fitness value, which in turn is passed back to the evolutionary algorithm.
The fitness value is used by the evolutionary algorithm to determine if the
rule set is good relative to other rule sets and use the fitness value for further
evolution. See Section 10.3.

An example application of the proposed model is a multiproduct, capacity-
limited assembly line for electronic modules. Up to 100 different circuit types
can be assembled and tested on the facilities. A minimum batch size of 20 is
desirable. Assembly kits are queued at the head of the line prior to the first
process step. In this discussion we will consider only primary operations with
no batch splitting or combining. The sequence of manufacturing operations
is shown in Figure 10.2.

Q1 and Q2 represent two primary queues for which dispatch rules are
applied. O1-04 are in-line operations, where the O3 operation is bypassed
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Figure 10.2. Assembly line operation sequence.

by some assemblies. The route through the line and the testing resources are
dependent on the product technology utilized and the assembly type. T1 and
T2 are testing operations that process unique assemblies. Assemblies that pass
test are sent to stock (S). Failing assemblies route through the repair operation
(R) and reenter Q2, often after the batch has completed testing. This phenom-
enon complicates the dispatching rules for Q2.

10.3 EVOLUTIONARY ALGORITHM

Holland proposed genetic algorithms as a method for function optimization
[43]. Based on the Darwinian metaphor, potential problem solutions are mem-
bers of a population P, consisting of N individuals. Each member of the
population possesses a genotype or chromosome, v;, composed of binary
strings. The fitness, f,, of the ith member is determined by a fitness function.
Generally, for each generation only the fittest individuals are bred. Both ge-
netic crossover and mutation operators can be employed to produce new in-
dividuals. Selection of parents for mating is often performed by the roulette
wheel method [6], where the probability of selection of a member is propor-
tional to the fitness of that population member. Let p; be the probability of
selecting the ith individual and F be the total fitness of all population mem-
bers. Then,

F=23f
and

p; = filF

Mating of selected parents is accomplished by crossover of genes from one
parent to the other, typically producing two offspring. Crossover points are
selected randomly, generally with equal probability for each gene location
within the chromosome. Mutation is accomplished by randomly selecting,
with a user-prescribed probability, a gene and complementing its value. At
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each generation, the population size is pruned, using the fitness values, to a
maximum population size. Elitist strategies preserve the highest fitness indi-
vidual(s).

Evolutionary algorithms (EAs) extend the genetic algorithm chromosome
to include integer and real gene values [98], as well as qualitative values and
functions [48]. Both crossover breeding and mutation are possible with EAs.
Crossover points are restricted to gene field boundaries. Mutation operators
may vary depending on the mutated gene. Further development of EA chro-
mosome structure permits a parse tree representation. Koza presents a general
parse tree structure consisting of nodes that are either functions or variables
[57]. These parse trees are equivalent to S-expressions in the LISP program-
ming language. Functions consist of arithmetic operations, mathematical func-
tions, Boolean operations, logical operators (IF-THEN-ELSE), and iterative
operators (DO-UNTIL). Variables or terminal elements represent data or in-
formation used by the functions and form the leaves of the tree. Mating is
performed by randomly generating a cut point in each parent tree, cutting the
trees, and attaching the left or right subtree to the other parent. Two offspring
are produced for each mating operation.

Let S be the set of functions and T be the set of terminal elements used
by the EA. For this application, select the functions, minimum (min), maxi-
mum (max), and complement (compl), for S. These functions will combine
the dispatching rules that comprise 7. We assume that the rule values are
normalized between 0 and 1 so that the complement is found by subtracting
the value from 1. The following dispatching rule parameters are chosen:

DD Due date

TQ Time in queue

BS Batch size

BT Batch processing time
ST Setup time

TY Test yield rate

Now,
S = {min, max, compl }
and
T = {DD, TQ, BS, BT, ST, TY }
Clearly, more complex dispatching rules [84], and hence, terminal elements

can be chosen for 7; however, for illustration purposes, we will limit our
discussion to these sets. Note that, for simplicity, we have not included any
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Figure 10.3. Parse tree mating operation.

product characteristic parameters, e.g., type of circuit board assembly. A parse
tree representation and mating of parents are shown in Figure 10.3.

10.4 PROCESS SIMULATION

In this decision support system, an agent-based simulator is used to determine
the outcome of a particular input queue structure. Simulations using multiple
agents allow us to model typical manufacturing situations more easily than
can be done with more traditional stochastic simulations. For example, we
may wish to include parameters in the worker human character agent that
account for decreased productivity near quitting time. In addition, by restrict-
ing the stochastic nature of the model, we can significantly reduce the number
of runs required to determine outcomes with an acceptable level of confi-
dence.

The basic agents used in our model are classified as shown in Figure 10.4.
Using object-oriented programming, each class is a subclass of the class above
it in the hierarchy. More agents could be included to incorporate additional
factors found in a typical process environment.

Internal agents are used to model the manufacturing facility and the prod-
ucts being produced, while the external agents are used to model external
pressures and effects that are not part of the normal manufacturing. For this
manufacturing line model, we include both product agents and resource
agents. The product agents represent the circuits being manufactured, either
analog or digital and may include other parameters such as electronic com-
ponent types, single or double-sided boards, hand-inserted components, and
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Figure 10.4. Agent hierarchy.

soldering difficulty. The process route is specified for each product agent
object. In Swarm simulation terminology, the batch agent represents a swarm
of circuit agents. The product agents specify setup times and latency for each
station. The resource agents are the human workers and the machine at a
particular station. In this approach, these agents are relatively simple and are
used primarily to determine machine availability and utilization; howeyver,
these resource agents can be acted upon or influenced by the external agents.
For the input queue, Q1, and the test queue, Q2, the evolutionary algorithm
will present different queue orderings for simulation and evaluation. The
queue agents will follow the dispatch rules presented by the evolutionary
algorithm.

We define external agents as those modeling all effects that are external to
the typical operation of the manufacturing line. These could include machine
character, human character, and management/expediting pressure. Machine
character includes breakdown and maintenance of the machines for each sta-
tion. Human character includes absenteeism, as well as time-of-day effects,
day-of-week effects, overtime effects, and holiday effects on productivity. We
can model either generic workers or individuals. Modeling of individual work-
ers is more appropriate if the productivity varies significantly with the worker,
as in the case of highly skilled jobs with workers of various levels of expe-
rience. For example, second-shift workers might be less skilled than first-shift
workers.

In addition to commercial stochastic simulation tools, a number of agent-
based simulators can be used, including Tierra [85], MANTA [33], and Swarm
[9]. Tierra is an advanced platform for the study of the evolution of artificial
organisms at the level of the genome. The software was developed by Thomas
Ray, formerly with the University of Delaware and the ATR Human Infor-
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mation Processing Research Laboratories in Kyoto and currently with the
University of Oklahoma. Tierra represents a bottom-up approach to general
agent-based simulation and evaluates the environment in which Darwinian
evolution can proceed within a computer. MANTA (Modeling an ANTnest
Activity), written by Alexis Drogoul in the laboratory of J. Ferber at the
University of Paris, is intended to provide a software environment in which
questions concerning collective, social computation can be addressed.
MANTA addresses many of the difficulties resulting from the cross-
disciplinary nature of agent-based simulation. Swarm was developed by the
Santa Fe Institute under Chris Langton. The Swarm project is aimed at the
development of a fully general-purpose artificial-life simulator. Swarm pro-
vides a well-developed platform for the simulation of artificial worlds popu-
lated with agents and contains a large library of design and analysis tools and
a kernel to drive the simulation [33]. It is written in Objective-C.

The multiagent simulation will result in several measures that are used by
the fuzzy evaluator to determine the fitness of the dispatching rule sets. These
include machine utilization, late orders, revenue, and throughput. Specific
information can be generated for each product batch, as well as production
performance over a period of time. If Swarm is used as the simulation vehicle,
collection of this information is often performed through the use of simulator
probes [9].

10.5 FUZZY LOGIC EVALUATION

The fuzzy logic evaluator receives business and performance parameter inputs
from the simulation model. Typical business measures include total processing
interval, throughput, late orders, order fill, and revenue. Performance mea-
sures are maximum queue size (Q2), queue time, down time, yield rates, and
efficiency. The fuzzy model illustrated here is targeted primarily for evaluating
business parameters, but it can be easily extended to include factory perform-
ance measures. The output of the fuzzy evaluator is the fitness value of the
dispatching rule set that is fed back to the evolutionary algorithm (EA).

A fuzzy logic model is a type of expert system that utilizes input parameter
membership functions and a linguistic variable rule set to determine the value
for one or more crisp outputs [47, 54]. The membership functions for a pa-
rameter cover the universe of discourse, U, of that parameter. Membership
functions are generally defined by a human expert and are often depicted
graphically as shown in Figure 10.5. The late orders (LO) parameter and the
throughput (TP) parameter are two outputs, among others, of the simulator.
The fuzzy model evaluates these values to determine the extent of member-
ship in membership functions such as GOOD, FAIR, or POOR. Here we
consider only convex normal membership functions with fuzzy values in the
range from 0 to 1 [54].
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Figure 10.5. Membership functions: (a) number of late orders; (b) throughput.

Each input parameter value will have a degree of membership, w, in one
or more of its membership functions. For example, a late-order value of 10
has membership values of u, = 0, w,, = 1, and w, = 0 for the three functions
in Figure 10.5(a), whereas in Figure 10.5(b) a revenue value of 500 has w,
= 0.7, w,, = 0.35, and w, = 0. The linguistic variables, LOW, MEDIUM,
and HIGH, are used in rules to determine the fitness output, f, of the fuzzy
evaluator. The output, f, may be described by fuzzy sets or by a set of sin-
gleton values that are nonzero at only one point. Any number of sets or
singleton values can be specified [103]. If output fuzzy sets are used, then a
defuzzification method, such as center of gravity [54], must be employed to
compute a crisp output value. Using singleton output functions is computa-
tionally less demanding and is the method used here. Figure 10.6 depicts
singleton outputs used to evaluate f. The crisp fitness output value will be in
the range O to 1 (x-axis).

Let rule j be a conjunctive rule as follows:

If LO is LOW and RV is HIGH, then Fitness is EXCELLENT

This rule considers the degree of membership of late orders (LO) in its fuzzy
set LOW and the degree of membership of revenue (RV) in its fuzzy set
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Figure 10.6. Singleton outputs for fitness, f.

HIGH. The conditional part of the rule is the antecedent, and the action part
of the rule is termed the consequent. The rule will activate only if the degree
of membership for LO in LOW and the degree of membership of RV in HIGH
are nonzero. For the conjunctive rule, the min operation is performed. For the
Jjth rule above let w;(EX) represent the result of the min operation. Then

w,(EX) = min [1,(LO), pu(RV)]

All of the rules that activate will have a nonzero w;. The crisp fitness output,
f, 1s calculated using the weighted average method,

S, w(ZE) - ZE + 3, w(PR) - PR + 3, w(FR) - FR + 3, w(GD) - GD + 3, w(EX) - EX
- 2w,

f

where, as shown Figure 10.6,
ZE = 0, PR = 0.25, FR = 0.5, GD = 0.75, and EX = 1.0

The crisp fitness value computed by the fuzzy model is fed back to the
evolutionary algorithm. This computational feedback is required once for each
offspring member of the population, P. Based on the fitness values returned,
the EA will eliminate low-fitness population members and begin selection of
survivors for mating. The algorithm can be stopped after a prescribed number
of EA generations or when a prescribed fitness level is achieved.

In this chapter we presented a framework for computational discovery of
near-optimal product dispatching is proposed. The overall model incorporates
evolutionary algorithms, agent-based simulation, and fuzzy logic. The method
is flexible and permits the user to choose optimization parameters based on
extrinsic objectives that are different and separate from those used by the
evolutionary algorithm. The approach is useful as a stand-alone modeling tool
for complex environments and may be utilized as a powerful real-time deci-
sion support system.
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PRODUCT DEMAND
FORECASTING USING
GENETIC PROGRAMMING!

11.1 INTRODUCTION

The ability to forecast long-term future sales of specific products accurately
is highly desirable for many companies operating in the increasingly volatile
technology sector. Such a capability allows companies to avoid surpluses and
shortages in manufacturing resources, including materials, capital equipment,
and personnel. By long-term, we mean forecasting of monthly or quarterly
sales at a forecasting interval ranging from a few months up to a few years.
If forecasts of this type indicate a sharp increase in product demand several
months in advance, a company could hire and train additional personnel,
increase material safety stocks, and install additional manufacturing capacity.
Conversely, if forecasts indicate an impending sharp decline in product de-
mand in coming months, the company could reduce inventories, encourage
employees’ early retirement, or implement other measures to reduce expenses
and improve efficiency for the upcoming slow period.

In recent years, such long-term forecasting for telecommunications and
computer network-related products has proven to be an extremely difficult
problem due to increasing volatility in the telecommunications industry
brought on by numerous factors, including deregulation, the Telecommuni-
cations Act of 1996, and ever-expanding global competition. Whereas simple
heuristic location-estimation techniques, including exponential smoothing,
were in the past at least marginally adequate for developing long-term pre-
dictions in this market, we have found them to be wholly inadequate in recent
years. Moreover, due to the highly nonstationary, evolutionary, and indeed

'This chapter contributed by M. P. Tull, J. J. Sluss, Jr., and J. P. Havlicek, School of Electrical
& Computer Engineering, University of Oklahoma, Norman, Oklahoma.
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sometimes even chaotic nature of telecommunications product sales, the effort
required to reformulate continuously more sophisticated parametric methods
including linear regressions, classical Box-Jenkins ARMA models, and Kal-
man filters, can rapidly constitute an insurmountable burden.

Packard proposed methods for prediction of high-dimensional chaotic time
series using genetic algorithms based on conditional intervals for the inde-
pendent variables [64, 77]. Chromosomes composed of independent variable
vectors and their conditional value intervals are used to derive the dependent
variable forecast. In the case of a single time series, the vectors are windowed
historical values to the time series. Information-theoretic objective measures
are used for fitness determination. This method does not guarantee production
of conditions for all possible future dependent variable values, regardless of
future step size. Moreover, the method fails to relate the dependency of the
forecast variable functionally to the independent variables, thus making it
difficult to formulate a deterministic model.

Other studies using advanced neuro-fuzzy techniques have been proposed
[52, 101], but again these methods fail to produce an interpretive model of
market dynamics. We therefore opt for methods that guarantee wide coverage
for future prediction values and prediction step sizes, as well as produce a
deterministic model that can be studied in-depth for dependencies. One such
method is Koza’s genetic programming algorithm, which relies on functional
combinations of independent variables to yield (empirically discover) a model
for predicting the dependent variable [56].

In this study, we present results wherein long-term monthly sales of a
particular widely deployed telecommunications product were forecast using
genetic programming. These results provide a significant improvement over
our previous forecasting study using a commercial software package [97]. In
both the current and previous study we used the same independent economic
variables. For these extrinsic time series, we elected to use readily available
leading economic indicators, reasoning that these should be related to both
deployment of new telecommunications infrastructure and growth of existing
infrastructure. With this approach, the inherently self-organizing, unsuper-
vised nature of GAs frees the analyst from the need to explicitly model rapidly
changing nonstationary structure in the time series.

In the previous study [97], historical values of the actual sales time series
themselves were not considered by the GAs; however, in this study the actual
product demand figures are permitted into the empirical equation. The pre-
vious software was not capable of deriving the time lag or phase shift between
the dependent variable and each independent variable. This capability in the
new software avoids the need to perform correlation studies to establish the
time lags and offers a dynamic time lag selection capability within the al-
gorithm. The new software is written in C++ and operates on a Linux plat-
form.
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11.2 ALGORITHM DESCRIPTION

The independent variables are 12 time series of economic indicators selected
from among the many such series available on the Economic Time Series
website (http://www.economagic.com). The 12 indicators used were origi-
nally selected based both on correlation studies with the actual quarterly sales
data of the product of interest and on intuitive expectations derived from
extensive historical experience with the particular product.

11.2.1 Chromosome Structure

Each individual in the population has a single chromosome representing a
LISP S-expression, or parse tree, containing both operands and operations
[56]. The admissible operations are basic binary and unary calculator func-
tions, including add, subtract, multiply, divide, roots, logarithms, trigonomet-
ric transcendental functions, and simple-order statistics.

Admissible operands include numeric constants, time-lagged independent
variable values of one or more of the economic indicators, and one or more
time-lagged dependent variable values. The maximum chromosome size for
an individual is limited to 40 operations. Note that the number of operands
in any given chromosome is determined by the number of operators and the
operator types (unary or binary). In the initial populations, both the chro-
mosome lengths and the values of individual genes are generated randomly.
Multiple populations are often employed, and a population-to-population mi-
gration rate can be specified.

11.2.2 Fitness Evaluation

The fitness of individuals was evaluated based upon their ability to predict
monthly sales data correctly for the product. Let x, represent the actual
monthly sales for month k and £, ; represent the forecast of individual i for
month k, where k € [1,N] defines the evaluation set. We define f,, the fitness
of individual i, according to

fi= (11.1)
where
1 X .
a=—=> (x, — )P+ A (11.2)
N = ’

and where A = 107> X (chromosome length) is a penalty term that favors
shorter genetic programs over longer ones. We do not consider the length of
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the genetic program to be a particularly important factor in our application;
hence the small weight given to A in (11.2) indicates that this term will be
significant only in cases where two or more individuals are equally fit. When
this occurs, the individual with the shortest genetic program will be deemed
most fit.

11.2.3 Reproduction and Generation Evolution

The GA permits individuals to reproduce both sexually and asexually. In
sexual reproduction, two offspring are created with gene sequences derived
from those of the parents by single-point crossover reproduction [69]. A cross-
over point is chosen at random to divide each parent’s chromosome into two
gene sequences. Each offspring receives one gene sequence from each parent,
and the sequences were concatenated to create the offspring’s chromosome.

At each new generation, individuals are mated as parents for sexual repro-
duction using fitness proportionate selection, also known as roulette wheel
selection [66, 69]. At each generation, let

F:Z.fi

be the total fitness of the population. Then p, = f,/F defines the fraction of
the roulette wheel assigned to individual i, namely the probability that indi-
vidual i will be selected as a parent in a particular sexual reproduction. Sexual
reproduction continues until a number of offspring equal to a specified frac-
tion of the current population have been produced.

The GA can implement asexual reproduction using both mutation and in-
version [43, 69]. Mutation creates an offspring’s chromosome by first copying
the parent’s chromosome and then randomly choosing a gene to be replaced
with a randomly selected value of the same type (operator or operand). Like
mutation, inversion first copies the parent’s chromosome to the offspring. Two
randomly selected genes in the offspring’s chromosome are then swapped. As
in the case of sexual reproduction, individuals are selected as parents for
asexual reproduction by fitness-proportionate selection.

Subsequent to the production of offspring by sexual reproduction, the GA
subjects offspring to random mutation as described above. After mutation, all
offspring produced from a given population are placed in a new generation
pool for the population. When the new generation pool is filled, the fitness
of each individual in the new generation pool is evaluated. Hill-climbing
algorithms are then applied to the fittest individuals from the pool. In these
hill-climbing processes, a mutation, possibly random, is sequentially applied
to each gene in the chromosome of the selected individual and is retained
only if this mutation results in improved fitness. For a tree-structured chro-
mosome, operator hill-climbing exchanges the operations within the
chromosome from the pool of operators, either unary or binary. Operand hill-
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climbing exchanges one independent variable for another independent vari-
able. Lag-factor hill-climbing varies the phase or time lag of the independent
variables. Constant-factor hill-climbing modifies any constant operands in the
tree by multiplying and/or dividing the constant value by a randomly chosen
value. Although this multiple-point-mutation hill-climbing is computationally
expensive, we believe its use results in good genetic program models being
produced in the early generations. To reduce some of the computational load,
the hill-climbing methods can be applied every nth generation instead of every
generation. Not all of the hill-climbing methods need be applied at the same
generation nor at the same generation interval. For example, operator hill-
climbing can be specified every 10th generation, independent variable hill-
climbing every 15th generation, and time-lag hill-climbing every 25th
generation, and so on.

11.3 EXPERIMENTS AND RESULTS

Figure 11.1 shows the actual product demand time series, plotted by month,
where the data have been scaled to protect the proprietary nature of the ab-
solute values. The forecast interval is defined to be 12 months. The product
demand time series is divided into two segments. The first and largest segment
is used for the model evolution, i.e., the GA evolves the population of indi-
viduals using this segment. The second segment is the evaluation segment
and was chosen to be the last 12 months of the demand time series. This
segment is used only for fitness calculations and is not available for evolution
of the model.

The algorithm described in Section 11.2 represents a reasonably sophisti-
cated GA, for which a number of constants such as percent sexual reproduc-
tions, percent asexual reproductions, and mutations rates must be specified.

Total Demand History
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Figure 11.1. Monthly product demand time series.
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After empirically adjusting these constants over a period of several GA exe-
cutions, the following values delivered the best forecasting results observed
to date. Initial and sustained population sizes used were 100 to 400 individ-
uals. Up to 10 populations were permitted, with the population-to-population
migration rate dependent on the population sizes. For population sizes of 100
individuals the rate was 0.4%, with the migration restricted to the fittest in-
dividuals replacing the least-fit individuals. The maximum fraction of the
reproductions that were sexual was 50%, while the fraction that were asexual
was 71%. Of the asexual reproductions, 70% were small mutations in which
only one operator or independent variable was permitted to change, and 1%
were large mutations wherein two to five mutations were permitted. Indepen-
dent variable mutations rely on precomputed correlation coefficients of the
independent variable with the dependent demand variable, whereby an inde-
pendent variable with a high correlation has a proportionately higher chance
of being chosen for the mutation.

The mutation rate used here is quite high when compared to other studies.
Our observation is that the sexual reproduction using subtree crossover tends
to select two high-fitness parents and results in two low-fitness offspring being
produced. Mutation, coupled with hill-climbing, tends to rapidly improve
high-fitness individuals in each population. Note that sexual reproduction is
still necessary to produce new individuals that span the broad solution land-
scape and cannot be eliminated in favor of pure asexual reproduction.

Hill-climbing was performed every 40 generations. Applying hill-climbing
more often than this tended to nullify the diversity of the population. Only
individuals that were within 1% of the fittest individual were selected for hill-
climbing. Operator hill-climbing and operator-operand replacement hill-
climbing were employed. Independent variable hill-climbing, while available,
was not used. Operator hill-climbing simply cycles each operator node
through the set of operators looking for fitness improvement. Operator re-
placement hill-climbing uses simple constant values, such as 0, 1, 2, pi, 10,
to replace operators and operands in a special type of hill-climbing meant to
reduce the complexity of the individuals. Subsequently, these constants were
subjected to hill-climbing that would multiply or divide each by a random
value in the range of 1.25 to 1.75.

The GA was stopped when, after at least several hundred generations, only
negligible improvements in fitness were observed. In all cases, this occurred
after fewer than 500 generations had evolved. This number of generations is
considerably lower than in other published studies and is subject to further
research and evaluation as to the reasons why good models evolve in such a
low number of generations as compared to other studies.

Forecasting performance of the best individuals produced by the GA is
illustrated in Figures 11.2 and 11.3. The comparison shows the actual demand
versus the model’s predicted demand over the 12-month evaluation period. In
both models the error is quite low. Notice that both models capture the cyclic
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Figure 11.2. Model #1: Actual versus predicted demand over the 12-month evaluation
interval.

nature of the demand. Overall, both of these models had average percent
errors between 1 and 2%. For any given month, the largest demand error did
not exceed the single-day factory production capability.

Subsequent runs of the GA continued to produce models that were com-
parable to the two shown above. Out of thousands more generated, no superior
model emerged for several months. Thus, these models continued to be used
for the monthly demand prediction. Each month new demand data became
available, and the models were used to extend the prediction for 12 more
months.

The management opportunities afforded by the accuracy of these forecasts
are many and varied. The cyclic nature of the demand for these products is
a challenge to the production facility. The factory would normally prefer a
level production schedule that followed a level demand pattern. Since this is
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Figure 11.3. Model #2: actual versus predicted demand over the 12-month evaluation
interval.
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not the case, the factory encourages workforce vacation and liberal leave
during the low-demand periods, while a no-vacation policy and overtime are
utilized for the peak periods. One of the largest impacts of this accurate
demand prediction is in the raw materials inventory. Material planners are
provided with a breakdown of these long-term forecasts. Both long-term and
short-term material plans are impacted. Material planners provide vendors
with material due dates that correspond to the quarterly demand cycle. In
addition, vendors are provided with a more accurate one-year forecast for
their raw material.

Of course, revenue and sales are primary concerns, and an accurate forecast
can provide time to plan for periods of reduced demand. The forecast may
offer opportunities to offer sales discounts or other sales incentives to prevent
the realization of the reduced demand. Peak demand periods may offer op-
portunities to maximize profits. In either case, the forecast provides managers
the data necessary to plan months in advance. Proper planning and synchro-
nization of the corporate strategy can win new or retain existing customers
while maximizing asset utilization and profits.

11.4 CONCLUSION

This chapter is a case study for using evolutionary programming techniques
to develop long-term forecasting models for product demand. The method
uses 12 extrinsic independent economic variables to develop an empirical
formula-based model. The product demand time series studied here is difficult
and time-consuming to model and predict using traditional statists-based
methods.

The accuracy of the GA-generated models is extremely good and repre-
sents a significant improvement over previous studies. The models not only
provide valuable data for resource planning, but also offer insight as to what
economic factors drive the business being modeled. Several strategic business
units can use the product demand prediction data to formulate proactive plans
and initiatives.
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